4 research outputs found

    Proactive Scalability and Management of Resources in Hybrid Clouds via Machine Learning

    Get PDF
    In this paper, we present a novel framework for supporting the management and optimization of application subject to software anomalies and deployed on large scale cloud architectures, composed of different geographically distributed cloud regions. The framework uses machine learning models for predicting failures caused by accumulation of anomalies. It introduces a novel workload balancing approach and a proactive system scale up/scale down technique. We developed a prototype of the framework and present some experiments for validating the applicability of the proposed approache

    Proactive cloud management for highly heterogeneous multi-cloud infrastructures

    Get PDF
    Various literature studies demonstrated that the cloud computing paradigm can help to improve availability and performance of applications subject to the problem of software anomalies. Indeed, the cloud resource provisioning model enables users to rapidly access new processing resources, even distributed over different geographical regions, that can be promptly used in the case of, e.g., crashes or hangs of running machines, as well as to balance the load in the case of overloaded machines. Nevertheless, managing a complex geographically-distributed cloud deploy could be a complex and time-consuming task. Autonomic Cloud Manager (ACM) Framework is an autonomic framework for supporting proactive management of applications deployed over multiple cloud regions. It uses machine learning models to predict failures of virtual machines and to proactively redirect the load to healthy machines/cloud regions. In this paper, we study different policies to perform efficient proactive load balancing across cloud regions in order to mitigate the effect of software anomalies. These policies use predictions about the mean time to failure of virtual machines. We consider the case of heterogeneous cloud regions, i.e regions with different amount of resources, and we provide an experimental assessment of these policies in the context of ACM Framework

    Proactive Scalability and Management of Resources in Hybrid Clouds via Machine Learning

    No full text
    In this paper, we present a novel framework for supporting the management and optimization of application subject to software anomalies and deployed on large scale cloud architectures, composed of different geographically distributed cloud regions. The framework uses machine learning models for predicting failures caused by accumulation of anomalies. It introduces a novel workload balancing approach and a proactive system scale up/scale down technique. We developed a prototype of the framework and present some experiments for validating the applicability of the proposed approache
    corecore