11,967 research outputs found

    A Hybrid Approach to Privacy-Preserving Federated Learning

    Full text link
    Federated learning facilitates the collaborative training of models without the sharing of raw data. However, recent attacks demonstrate that simply maintaining data locality during training processes does not provide sufficient privacy guarantees. Rather, we need a federated learning system capable of preventing inference over both the messages exchanged during training and the final trained model while ensuring the resulting model also has acceptable predictive accuracy. Existing federated learning approaches either use secure multiparty computation (SMC) which is vulnerable to inference or differential privacy which can lead to low accuracy given a large number of parties with relatively small amounts of data each. In this paper, we present an alternative approach that utilizes both differential privacy and SMC to balance these trade-offs. Combining differential privacy with secure multiparty computation enables us to reduce the growth of noise injection as the number of parties increases without sacrificing privacy while maintaining a pre-defined rate of trust. Our system is therefore a scalable approach that protects against inference threats and produces models with high accuracy. Additionally, our system can be used to train a variety of machine learning models, which we validate with experimental results on 3 different machine learning algorithms. Our experiments demonstrate that our approach out-performs state of the art solutions

    Privacy-Friendly Collaboration for Cyber Threat Mitigation

    Full text link
    Sharing of security data across organizational boundaries has often been advocated as a promising way to enhance cyber threat mitigation. However, collaborative security faces a number of important challenges, including privacy, trust, and liability concerns with the potential disclosure of sensitive data. In this paper, we focus on data sharing for predictive blacklisting, i.e., forecasting attack sources based on past attack information. We propose a novel privacy-enhanced data sharing approach in which organizations estimate collaboration benefits without disclosing their datasets, organize into coalitions of allied organizations, and securely share data within these coalitions. We study how different partner selection strategies affect prediction accuracy by experimenting on a real-world dataset of 2 billion IP addresses and observe up to a 105% prediction improvement.Comment: This paper has been withdrawn as it has been superseded by arXiv:1502.0533

    Controlled Data Sharing for Collaborative Predictive Blacklisting

    Get PDF
    Although sharing data across organizations is often advocated as a promising way to enhance cybersecurity, collaborative initiatives are rarely put into practice owing to confidentiality, trust, and liability challenges. In this paper, we investigate whether collaborative threat mitigation can be realized via a controlled data sharing approach, whereby organizations make informed decisions as to whether or not, and how much, to share. Using appropriate cryptographic tools, entities can estimate the benefits of collaboration and agree on what to share in a privacy-preserving way, without having to disclose their datasets. We focus on collaborative predictive blacklisting, i.e., forecasting attack sources based on one's logs and those contributed by other organizations. We study the impact of different sharing strategies by experimenting on a real-world dataset of two billion suspicious IP addresses collected from Dshield over two months. We find that controlled data sharing yields up to 105% accuracy improvement on average, while also reducing the false positive rate.Comment: A preliminary version of this paper appears in DIMVA 2015. This is the full version. arXiv admin note: substantial text overlap with arXiv:1403.212
    • …
    corecore