152,503 research outputs found

    Learning Privacy Preserving Encodings through Adversarial Training

    Full text link
    We present a framework to learn privacy-preserving encodings of images that inhibit inference of chosen private attributes, while allowing recovery of other desirable information. Rather than simply inhibiting a given fixed pre-trained estimator, our goal is that an estimator be unable to learn to accurately predict the private attributes even with knowledge of the encoding function. We use a natural adversarial optimization-based formulation for this---training the encoding function against a classifier for the private attribute, with both modeled as deep neural networks. The key contribution of our work is a stable and convergent optimization approach that is successful at learning an encoder with our desired properties---maintaining utility while inhibiting inference of private attributes, not just within the adversarial optimization, but also by classifiers that are trained after the encoder is fixed. We adopt a rigorous experimental protocol for verification wherein classifiers are trained exhaustively till saturation on the fixed encoders. We evaluate our approach on tasks of real-world complexity---learning high-dimensional encodings that inhibit detection of different scene categories---and find that it yields encoders that are resilient at maintaining privacy.Comment: To appear in WACV 201

    D-ADMM: A Communication-Efficient Distributed Algorithm For Separable Optimization

    Full text link
    We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.Comment: To appear in IEEE Transactions on Signal Processin

    Privacy-preserving Cross-domain Routing Optimization -- A Cryptographic Approach

    Full text link
    Today's large-scale enterprise networks, data center networks, and wide area networks can be decomposed into multiple administrative or geographical domains. Domains may be owned by different administrative units or organizations. Hence protecting domain information is an important concern. Existing general-purpose Secure Multi-Party Computation (SMPC) methods that preserves privacy for domains are extremely slow for cross-domain routing problems. In this paper we present PYCRO, a cryptographic protocol specifically designed for privacy-preserving cross-domain routing optimization in Software Defined Networking (SDN) environments. PYCRO provides two fundamental routing functions, policy-compliant shortest path computing and bandwidth allocation, while ensuring strong protection for the private information of domains. We rigorously prove the privacy guarantee of our protocol. We have implemented a prototype system that runs PYCRO on servers in a campus network. Experimental results using real ISP network topologies show that PYCRO is very efficient in computation and communication costs

    Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms with Directed Gossip Communication

    Full text link
    We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.Comment: 28 pages, journal; revise
    • …
    corecore