3,282 research outputs found

    On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects

    Full text link
    The Internet of Things (IoT) will be a main data generation infrastructure for achieving better system intelligence. This paper considers the design and implementation of a practical privacy-preserving collaborative learning scheme, in which a curious learning coordinator trains a better machine learning model based on the data samples contributed by a number of IoT objects, while the confidentiality of the raw forms of the training data is protected against the coordinator. Existing distributed machine learning and data encryption approaches incur significant computation and communication overhead, rendering them ill-suited for resource-constrained IoT objects. We study an approach that applies independent Gaussian random projection at each IoT object to obfuscate data and trains a deep neural network at the coordinator based on the projected data from the IoT objects. This approach introduces light computation overhead to the IoT objects and moves most workload to the coordinator that can have sufficient computing resources. Although the independent projections performed by the IoT objects address the potential collusion between the curious coordinator and some compromised IoT objects, they significantly increase the complexity of the projected data. In this paper, we leverage the superior learning capability of deep learning in capturing sophisticated patterns to maintain good learning performance. Extensive comparative evaluation shows that this approach outperforms other lightweight approaches that apply additive noisification for differential privacy and/or support vector machines for learning in the applications with light data pattern complexities.Comment: 12 pages,IOTDI 201

    Paralinguistic Privacy Protection at the Edge

    Full text link
    Voice user interfaces and digital assistants are rapidly entering our lives and becoming singular touch points spanning our devices. These always-on services capture and transmit our audio data to powerful cloud services for further processing and subsequent actions. Our voices and raw audio signals collected through these devices contain a host of sensitive paralinguistic information that is transmitted to service providers regardless of deliberate or false triggers. As our emotional patterns and sensitive attributes like our identity, gender, mental well-being, are easily inferred using deep acoustic models, we encounter a new generation of privacy risks by using these services. One approach to mitigate the risk of paralinguistic-based privacy breaches is to exploit a combination of cloud-based processing with privacy-preserving, on-device paralinguistic information learning and filtering before transmitting voice data. In this paper we introduce EDGY, a configurable, lightweight, disentangled representation learning framework that transforms and filters high-dimensional voice data to identify and contain sensitive attributes at the edge prior to offloading to the cloud. We evaluate EDGY's on-device performance and explore optimization techniques, including model quantization and knowledge distillation, to enable private, accurate and efficient representation learning on resource-constrained devices. Our results show that EDGY runs in tens of milliseconds with 0.2% relative improvement in ABX score or minimal performance penalties in learning linguistic representations from raw voice signals, using a CPU and a single-core ARM processor without specialized hardware.Comment: 14 pages, 7 figures. arXiv admin note: text overlap with arXiv:2007.1506
    • …
    corecore