3 research outputs found

    Privacy-preserving Incremental ADMM for Decentralized Consensus Optimization

    Full text link
    The alternating direction method of multipliers (ADMM) has been recently recognized as a promising optimizer for large-scale machine learning models. However, there are very few results studying ADMM from the aspect of communication costs, especially jointly with privacy preservation, which are critical for distributed learning. We investigate the communication efficiency and privacy-preservation of ADMM by solving the consensus optimization problem over decentralized networks. Since walk algorithms can reduce communication load, we first propose incremental ADMM (I-ADMM) based on the walk algorithm, the updating order of which follows a Hamiltonian cycle instead. However, I-ADMM cannot guarantee the privacy for agents against external eavesdroppers even if the randomized initialization is applied. To protect privacy for agents, we then propose two privacy-preserving incremental ADMM algorithms, i.e., PI-ADMM1 and PI-ADMM2, where perturbation over step sizes and primal variables is adopted, respectively. Through theoretical analyses, we prove the convergence and privacy preservation for PI-ADMM1, which are further supported by numerical experiments. Besides, simulations demonstrate that the proposed PI-ADMM1 and PI-ADMM2 algorithms are communication efficient compared with state-of-the-art methods

    Fully Decentralized Federated Learning Based Beamforming Design for UAV Communications

    Full text link
    To handle the data explosion in the era of internet of things (IoT), it is of interest to investigate the decentralized network, with the aim at relaxing the burden to central server along with keeping data privacy. In this work, we develop a fully decentralized federated learning (FL) framework with an inexact stochastic parallel random walk alternating direction method of multipliers (ISPW-ADMM). Performing more communication efficient and enhanced privacy preservation compared with the current state-of-the-art, the proposed ISPW-ADMM can be partially immune to the impacts from time-varying dynamic network and stochastic data collection, while still in fast convergence. Benefits from the stochastic gradients and biased first-order moment estimation, the proposed framework can be applied to any decentralized FL tasks over time-varying graphs. Thus to further demonstrate the practicability of such framework in providing fast convergence, high communication efficiency, and system robustness, we study the extreme learning machine(ELM)-based FL model for robust beamforming (BF) design in UAV communications, as verified by the numerical simulations

    Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in Edge Industrial IoT

    Full text link
    Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading tasks to nearby edge nodes. Meanwhile, the increasing network size makes it impractical for centralized data processing due to limited bandwidth, and consequently a decentralized learning scheme is preferable. Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes. For RL in a decentralized setup, edge nodes (agents) connected through a communication network aim to work collaboratively to find a policy to optimize the global reward as the sum of local rewards. However, communication costs, scalability and adaptation in complex environments with heterogeneous agents may significantly limit the performance of decentralized RL. Alternating direction method of multipliers (ADMM) has a structure that allows for decentralized implementation, and has shown faster convergence than gradient descent based methods. Therefore, we propose an adaptive stochastic incremental ADMM (asI-ADMM) algorithm and apply the asI-ADMM to decentralized RL with edge-computing-empowered IIoT networks. We provide convergence properties for proposed algorithms by designing a Lyapunov function and prove that the asI-ADMM has O(1k)+O(1M)O(\frac{1}{k}) +O(\frac{1}{M}) convergence rate where kk and M M are the number of iterations and batch samples, respectively. Then, we test our algorithm with two supervised learning problems. For performance evaluation, we simulate two applications in decentralized RL settings with homogeneous and heterogeneous agents. The experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments
    corecore