19 research outputs found

    Cheating-Resilient Incentive Scheme for Mobile Crowdsensing Systems

    Full text link
    Mobile Crowdsensing is a promising paradigm for ubiquitous sensing, which explores the tremendous data collected by mobile smart devices with prominent spatial-temporal coverage. As a fundamental property of Mobile Crowdsensing Systems, temporally recruited mobile users can provide agile, fine-grained, and economical sensing labors, however their self-interest cannot guarantee the quality of the sensing data, even when there is a fair return. Therefore, a mechanism is required for the system server to recruit well-behaving users for credible sensing, and to stimulate and reward more contributive users based on sensing truth discovery to further increase credible reporting. In this paper, we develop a novel Cheating-Resilient Incentive (CRI) scheme for Mobile Crowdsensing Systems, which achieves credibility-driven user recruitment and payback maximization for honest users with quality data. Via theoretical analysis, we demonstrate the correctness of our design. The performance of our scheme is evaluated based on extensive realworld trace-driven simulations. Our evaluation results show that our scheme is proven to be effective in terms of both guaranteeing sensing accuracy and resisting potential cheating behaviors, as demonstrated in practical scenarios, as well as those that are intentionally harsher

    Privacy-aware secured discrete framework in wireless sensor network

    Get PDF
    Rapid expansion of wireless sensor network-internet of things (WSN-IoT) in terms of application and technologies has led to wide research considering efficiency and security aspects. Considering the efficiency approach such as data aggregation along with consensus mechanism has been one of the efficient and secure approaches, however, privacy has been one of major concern and it remains an open issue due to low classification and high misclassification rate. This research work presents the privacy and reliable aware discrete (PRD-aggregation) framework to protect and secure the privacy of the node. It works by initializing the particular variable for each node and defining the threshold; further nodes update their state through the functions, and later consensus is developed among the sensor nodes, which further updates. The novelty of PRD is discretized transmission for efficiency and security. PRD-aggregation offers reliability through efficient termination criteria and avoidance of transmission failure. PRD-aggregation framework is evaluated considering the number of deceptive nodes for securing the node in the network. Furthermore, comparative analysis proves the marginal improvisation in terms of discussed parameter against the existing protocol

    Affirmed Crowd Sensor Selection based Cooperative Spectrum Sensing

    Get PDF
    The Cooperative Spectrum sensing model is gaining importance among the cognitive radio network sharing groups. While the crowd-sensing model (technically the cooperative spectrum sensing) model has positive developments, one of the critical challenges plaguing the model is the false or manipulated crowd sensor data, which results in implications for the secondary user’s network. Considering the efficacy of the spectrum sensing by crowd-sensing model, it is vital to address the issues of falsifications and manipulations, by focusing on the conditions of more accurate determination models. Concerning this, a method of avoiding falsified crowd sensors from the process of crowd sensors centric cooperative spectrum sensing has portrayed in this article. The proposal is a protocol that selects affirmed crowd sensor under diversified factors of the decision credibility about spectrum availability. An experimental study is a simulation approach that evincing the competency of the proposal compared to the other contemporary models available in recent literature
    corecore