7,182 research outputs found

    Dynamically Weighted Federated k-Means

    Full text link
    Federated clustering, an integral aspect of federated machine learning, enables multiple data sources to collaboratively cluster their data, maintaining decentralization and preserving privacy. In this paper, we introduce a novel federated clustering algorithm named Dynamically Weighted Federated k-means (DWF k-means) based on Lloyd's method for k-means clustering, to address the challenges associated with distributed data sources and heterogeneous data. Our proposed algorithm combines the benefits of traditional clustering techniques with the privacy and scalability benefits offered by federated learning. The algorithm facilitates collaborative clustering among multiple data owners, allowing them to cluster their local data collectively while exchanging minimal information with the central coordinator. The algorithm optimizes the clustering process by adaptively aggregating cluster assignments and centroids from each data source, thereby learning a global clustering solution that reflects the collective knowledge of the entire federated network. We address the issue of empty clusters, which commonly arises in the context of federated clustering. We conduct experiments on multiple datasets and data distribution settings to evaluate the performance of our algorithm in terms of clustering score, accuracy, and v-measure. The results demonstrate that our approach can match the performance of the centralized classical k-means baseline, and outperform existing federated clustering methods like k-FED in realistic scenarios

    CryptGraph: Privacy Preserving Graph Analytics on Encrypted Graph

    Full text link
    Many graph mining and analysis services have been deployed on the cloud, which can alleviate users from the burden of implementing and maintaining graph algorithms. However, putting graph analytics on the cloud can invade users' privacy. To solve this problem, we propose CryptGraph, which runs graph analytics on encrypted graph to preserve the privacy of both users' graph data and the analytic results. In CryptGraph, users encrypt their graphs before uploading them to the cloud. The cloud runs graph analysis on the encrypted graphs and obtains results which are also in encrypted form that the cloud cannot decipher. During the process of computing, the encrypted graphs are never decrypted on the cloud side. The encrypted results are sent back to users and users perform the decryption to obtain the plaintext results. In this process, users' graphs and the analytics results are both encrypted and the cloud knows neither of them. Thereby, users' privacy can be strongly protected. Meanwhile, with the help of homomorphic encryption, the results analyzed from the encrypted graphs are guaranteed to be correct. In this paper, we present how to encrypt a graph using homomorphic encryption and how to query the structure of an encrypted graph by computing polynomials. To solve the problem that certain operations are not executable on encrypted graphs, we propose hard computation outsourcing to seek help from users. Using two graph algorithms as examples, we show how to apply our methods to perform analytics on encrypted graphs. Experiments on two datasets demonstrate the correctness and feasibility of our methods
    • …
    corecore