7 research outputs found

    Federated Machine Learning

    Get PDF
    In recent times, machine gaining knowledge has transformed areas such as processer visualisation, morphological and speech identification and processing. The implementation of machine learning is frim built on data and gathering the data in confidentiality disturbing circumstances. The studying of amalgamated systems and methods is an innovative area of modern technological field that facilitates the training within models without gathering the information. As an alternative to transferring the information, clients co-operate together to train a model be only delivering weights updates to the server. While this concerning privacy is better and more adaptable in some circumstances very expensive. This thesis generally introduces some of the fundamental theories, structural design and procedures of federated machine learning and its prospective in numerous applications. Some optimisation methods and some privacy ensuring systems like differential privacy also reviewed

    Vertical Federated Learning

    Full text link
    Vertical Federated Learning (VFL) is a federated learning setting where multiple parties with different features about the same set of users jointly train machine learning models without exposing their raw data or model parameters. Motivated by the rapid growth in VFL research and real-world applications, we provide a comprehensive review of the concept and algorithms of VFL, as well as current advances and challenges in various aspects, including effectiveness, efficiency, and privacy. We provide an exhaustive categorization for VFL settings and privacy-preserving protocols and comprehensively analyze the privacy attacks and defense strategies for each protocol. In the end, we propose a unified framework, termed VFLow, which considers the VFL problem under communication, computation, privacy, and effectiveness constraints. Finally, we review the most recent advances in industrial applications, highlighting open challenges and future directions for VFL

    Privacy-preserving inter-database operations

    Get PDF
    Abstract. We present protocols for distributed computation of relational intersections and equi-joins such that each site gains no information about the tuples at the other site that do not intersect or join with its own tuples. Such protocols form the building blocks of distributed information systems that manage sensitive information, such as patient records and financial transactions, that must be shared in only a limited manner. We discuss applications of our protocols, outlining the ramifications of assumptions such as semi-honesty. In addition to improving on the efficiency of earlier protocols, our protocols are asymmetric, making them especially applicable to applications in which a low-powered client interacts with a server in a privacy-preserving manner. We present a brief experimental study of our protocols.
    corecore