53 research outputs found

    Privacy-Preserving Classification on Deep Neural Network

    Get PDF
    Neural Networks (NN) are today increasingly used in Machine Learning where they have become deeper and deeper to accurately model or classify high-level abstractions of data. Their development however also gives rise to important data privacy risks. This observation motives Microsoft researchers to propose a framework, called Cryptonets. The core idea is to combine simplifications of the NN with Fully Homomorphic Encryptions (FHE) techniques to get both confidentiality of the manipulated data and efficiency of the processing. While efficiency and accuracy are demonstrated when the number of non-linear layers is small (eg 22), Cryptonets unfortunately becomes ineffective for deeper NNs which let the problem of privacy preserving matching open in these contexts. This work successfully addresses this problem by combining the original ideas of Cryptonets\u27 solution with the batch normalization principle introduced at ICML 2015 by Ioffe and Szegedy. We experimentally validate the soundness of our approach with a neural network with 66 non-linear layers. When applied to the MNIST database, it competes the accuracy of the best non-secure versions, thus significantly improving Cryptonets

    A Privacy-Preserving Outsourced Data Model in Cloud Environment

    Full text link
    Nowadays, more and more machine learning applications, such as medical diagnosis, online fraud detection, email spam filtering, etc., services are provided by cloud computing. The cloud service provider collects the data from the various owners to train or classify the machine learning system in the cloud environment. However, multiple data owners may not entirely rely on the cloud platform that a third party engages. Therefore, data security and privacy problems are among the critical hindrances to using machine learning tools, particularly with multiple data owners. In addition, unauthorized entities can detect the statistical input data and infer the machine learning model parameters. Therefore, a privacy-preserving model is proposed, which protects the privacy of the data without compromising machine learning efficiency. In order to protect the data of data owners, the epsilon-differential privacy is used, and fog nodes are used to address the problem of the lower bandwidth and latency in this proposed scheme. The noise is produced by the epsilon-differential mechanism, which is then added to the data. Moreover, the noise is injected at the data owner site to protect the owners data. Fog nodes collect the noise-added data from the data owners, then shift it to the cloud platform for storage, computation, and performing the classification tasks purposes
    • …
    corecore