8 research outputs found

    Privacy-preserving record linkage using Bloom filters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combining multiple databases with disjunctive or additional information on the same person is occurring increasingly throughout research. If unique identification numbers for these individuals are not available, probabilistic record linkage is used for the identification of matching record pairs. In many applications, identifiers have to be encrypted due to privacy concerns.</p> <p>Methods</p> <p>A new protocol for privacy-preserving record linkage with encrypted identifiers allowing for errors in identifiers has been developed. The protocol is based on Bloom filters on <it>q</it>-grams of identifiers.</p> <p>Results</p> <p>Tests on simulated and actual databases yield linkage results comparable to non-encrypted identifiers and superior to results from phonetic encodings.</p> <p>Conclusion</p> <p>We proposed a protocol for privacy-preserving record linkage with encrypted identifiers allowing for errors in identifiers. Since the protocol can be easily enhanced and has a low computational burden, the protocol might be useful for many applications requiring privacy-preserving record linkage.</p

    Einsatz und Optimierung einer überwachten Klassifizierungsmethode im Kontext eines Privacy-Preserving-Record-Linkage

    Get PDF

    A framework for accurate, efficient private record linkage

    Get PDF

    Scalable and approximate privacy-preserving record linkage

    No full text
    Record linkage, the task of linking multiple databases with the aim to identify records that refer to the same entity, is occurring increasingly in many application areas. Generally, unique entity identifiers are not available in all the databases to be linked. Therefore, record linkage requires the use of personal identifying attributes, such as names and addresses, to identify matching records that need to be reconciled to the same entity. Often, it is not permissible to exchange personal identifying data across different organizations due to privacy and confidentiality concerns or regulations. This has led to the novel research area of privacy-preserving record linkage (PPRL). PPRL addresses the problem of how to link different databases to identify records that correspond to the same real-world entities, without revealing the identities of these entities or any private or confidential information to any party involved in the process, or to any external party, such as a researcher. The three key challenges that a PPRL solution in a real-world context needs to address are (1) scalability to largedatabases by efficiently conducting linkage; (2) achieving high quality of linkage through the use of approximate (string) matching and effective classification of the compared record pairs into matches (i.e. pairs of records that refer to the same entity) and non-matches (i.e. pairs of records that refer to different entities); and (3) provision of sufficient privacy guarantees such that the interested parties only learn the actual values of certain attributes of the records that were classified as matches, and the process is secure with regard to any internal or external adversary. In this thesis, we present extensive research in PPRL, where we have addressed several gaps and problems identified in existing PPRL approaches. First, we begin the thesis with a review of the literature and we propose a taxonomy of PPRL to characterize existing techniques. This allows us to identify gaps and research directions. In the remainder of the thesis, we address several of the identified shortcomings. One main shortcoming we address is a framework for empirical and comparative evaluation of different PPRL solutions, which has not been studied in the literature so far. Second, we propose several novel algorithms for scalable and approximate PPRL by addressing the three main challenges of PPRL. We propose efficient private blocking techniques, for both three-party and two-party scenarios, based on sorted neighborhood clustering to address the scalability challenge. Following, we propose two efficient two-party techniques for private matching and classification to address the linkage quality challenge in terms of approximate matching and effective classification. Privacy is addressed in these approaches using efficient data perturbation techniques including k-anonymous mapping, reference values, and Bloom filters. Finally, the thesis reports on an extensive comparative evaluation of our proposed solutions with several other state-of-the-art techniques on real-world datasets, which shows that our solutions outperform others in terms of all three key challenges

    A Scalable Blocking Framework for Multidatabase Privacy-preserving Record Linkage

    No full text
    Today many application domains, such as national statistics, healthcare, business analytic, fraud detection, and national security, require data to be integrated from multiple databases. Record linkage (RL) is a process used in data integration which links multiple databases to identify matching records that belong to the same entity. RL enriches the usefulness of data by removing duplicates, errors, and inconsistencies which improves the effectiveness of decision making in data analytic applications. Often, organisations are not willing or authorised to share the sensitive information in their databases with any other party due to privacy and confidentiality regulations. The linkage of databases of different organisations is an emerging research area known as privacy-preserving record linkage (PPRL). PPRL facilitates the linkage of databases by ensuring the privacy of the entities in these databases. In multidatabase (MD) context, PPRL is significantly challenged by the intrinsic exponential growth in the number of potential record pair comparisons. Such linkage often requires significant time and computational resources to produce the resulting matching sets of records. Due to increased risk of collusion, preserving the privacy of the data is more problematic with an increase of number of parties involved in the linkage process. Blocking is commonly used to scale the linkage of large databases. The aim of blocking is to remove those record pairs that correspond to non-matches (refer to different entities). Many techniques have been proposed for RL and PPRL for blocking two databases. However, many of these techniques are not suitable for blocking multiple databases. This creates a need to develop blocking technique for the multidatabase linkage context as real-world applications increasingly require more than two databases. This thesis is the first to conduct extensive research on blocking for multidatabase privacy-preserved record linkage (MD-PPRL). We consider several research problems in blocking of MD-PPRL. First, we start with a broad background literature on PPRL. This allow us to identify the main research gaps that need to be investigated in MD-PPRL. Second, we introduce a blocking framework for MD-PPRL which provides more flexibility and control to database owners in the block generation process. Third, we propose different techniques that are used in our framework for (1) blocking of multiple databases, (2) identifying blocks that need to be compared across subgroups of these databases, and (3) filtering redundant record pair comparisons by the efficient scheduling of block comparisons to improve the scalability of MD-PPRL. Each of these techniques covers an important aspect of blocking in real-world MD-PPRL applications. Finally, this thesis reports on an extensive evaluation of the combined application of these methods with real datasets, which illustrates that they outperform existing approaches in term of scalability, accuracy, and privacy

    Privacy preserving record linkage approaches

    No full text
    Privacy-preserving record linkage is a very important task, mostly because of the very sensitive nature of the personal data. The main focus in this task is to find a way to match records from among different organisation data sets or databases without revealing competitive or personal information to non-owners. Towards accomplishing this task, several methods and protocols have been proposed. In this work, we propose a certain methodology for preserving the privacy of various record linkage approaches and we implement, examine and compare four pairs of privacy preserving record linkage methods and protocols. Two of these protocols use n-gram based similarity comparison techniques, the third protocol uses the well known edit distance and the fourth one implements the Jaro-Winkler distance metric. All of the protocols used are enhanced by private key cryptography and hash encoding. This paper presents also a blocking scheme as an extension to the privacy preserving record linkage methodology. Our comparison is backed up by extended experimental evaluation that demonstrates the performance achieved by each of the proposed protocols. Copyright © 2009 Inderscience Enterprises Ltd
    corecore