1,882 research outputs found

    Large Margin Multiclass Gaussian Classification with Differential Privacy

    Full text link
    As increasing amounts of sensitive personal information is aggregated into data repositories, it has become important to develop mechanisms for processing the data without revealing information about individual data instances. The differential privacy model provides a framework for the development and theoretical analysis of such mechanisms. In this paper, we propose an algorithm for learning a discriminatively trained multi-class Gaussian classifier that satisfies differential privacy using a large margin loss function with a perturbed regularization term. We present a theoretical upper bound on the excess risk of the classifier introduced by the perturbation.Comment: 14 page

    Differentially Private Empirical Risk Minimization

    Full text link
    Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ϵ\epsilon-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance.Comment: 40 pages, 7 figures, accepted to the Journal of Machine Learning Researc

    Distributed Kernel Regression: An Algorithm for Training Collaboratively

    Full text link
    This paper addresses the problem of distributed learning under communication constraints, motivated by distributed signal processing in wireless sensor networks and data mining with distributed databases. After formalizing a general model for distributed learning, an algorithm for collaboratively training regularized kernel least-squares regression estimators is derived. Noting that the algorithm can be viewed as an application of successive orthogonal projection algorithms, its convergence properties are investigated and the statistical behavior of the estimator is discussed in a simplified theoretical setting.Comment: To be presented at the 2006 IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13-17, 200
    • …
    corecore