62,788 research outputs found

    Quantum identification system

    Full text link
    A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are ``refuelled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of a noisy quantum channel. The second protocol employs unconditionally secure authentication of information sent over the public channel, and thus it can be applied even in the case when an adversary is allowed to modify public communications. An experimental realization of a quantum identification system is described.Comment: RevTeX, 4 postscript figures, 9 pages, submitted to Physical Review

    Energy efficient privacy preserved data gathering in wireless sensor networks having multiple sinks

    Get PDF
    Wireless sensor networks (WSNs) generally have a many-to-one structure so that event information flows from sensors to a unique sink. In recent WSN applications, many-tomany structures are evolved due to need for conveying collected event information to multiple sinks at the same time. This study proposes an anonymity method bases on k-anonymity for preventing record disclosure of collected event information in WSNs. Proposed method takes the anonymity requirements of multiple sinks into consideration by providing different levels of privacy for each destination sink. Attributes, which may identify of an event owner, are generalized or encrypted in order to meet the different anonymity requirements of sinks. Privacy guaranteed event information can be multicasted to all sinks instead of sending to each sink one by one. Since minimization of energy consumption is an important design criteria for WSNs, our method enables us to multicast the same event information to multiple sinks and reduce energy consumption

    Mind your step! : How profiling location reveals your identity - and how you prepare for it

    Get PDF
    Location-based services (LBS) are services that position your mobile phone to provide some context-based service for you. Some of these services – called ‘location tracking’ applications - need frequent updates of the current position to decide whether a service should be initiated. Thus, internet-based systems will continuously collect and process the location in relationship to a personal context of an identified customer. This paper will present the concept of location as part of a person’s identity. I will conceptualize location in information systems and relate it to concepts like privacy, geographical information systems and surveillance. The talk will present how the knowledge of a person's private life and identity can be enhanced with data mining technologies on location profiles and movement patterns. Finally, some first concepts about protecting location information
    corecore