16,831 research outputs found

    Privacy Preserving Clustering on Horizontally Partitioned Data

    Get PDF
    Data mining has been a popular research area for more than a decade due to its vast spectrum of applications. The power of data mining tools to extract hidden information that cannot be otherwise seen by simple querying proved to be useful. However, the popularity and wide availability of data mining tools also raised concerns about the privacy of individuals. The aim of privacy preserving data mining researchers is to develop data mining techniques that could be applied on databases without violating the privacy of individuals. Privacy preserving techniques for various data mining models have been proposed, initially for classification on centralized data then for association rules in distributed environments. In this work, we propose methods for constructing the dissimilarity matrix of objects from different sites in a privacy preserving manner which can be used for privacy preserving clustering as well as database joins, record linkage and other operations that require pair-wise comparison of individual private data objects horizontally distributed to multiple sites

    Conclave: secure multi-party computation on big data (extended TR)

    Full text link
    Secure Multi-Party Computation (MPC) allows mutually distrusting parties to run joint computations without revealing private data. Current MPC algorithms scale poorly with data size, which makes MPC on "big data" prohibitively slow and inhibits its practical use. Many relational analytics queries can maintain MPC's end-to-end security guarantee without using cryptographic MPC techniques for all operations. Conclave is a query compiler that accelerates such queries by transforming them into a combination of data-parallel, local cleartext processing and small MPC steps. When parties trust others with specific subsets of the data, Conclave applies new hybrid MPC-cleartext protocols to run additional steps outside of MPC and improve scalability further. Our Conclave prototype generates code for cleartext processing in Python and Spark, and for secure MPC using the Sharemind and Obliv-C frameworks. Conclave scales to data sets between three and six orders of magnitude larger than state-of-the-art MPC frameworks support on their own. Thanks to its hybrid protocols, Conclave also substantially outperforms SMCQL, the most similar existing system.Comment: Extended technical report for EuroSys 2019 pape
    corecore