1,728 research outputs found

    Is Geometry Enough for Matching in Visual Localization?

    Full text link
    In this paper, we propose to go beyond the well-established approach to vision-based localization that relies on visual descriptor matching between a query image and a 3D point cloud. While matching keypoints via visual descriptors makes localization highly accurate, it has significant storage demands, raises privacy concerns and requires update to the descriptors in the long-term. To elegantly address those practical challenges for large-scale localization, we present GoMatch, an alternative to visual-based matching that solely relies on geometric information for matching image keypoints to maps, represented as sets of bearing vectors. Our novel bearing vectors representation of 3D points, significantly relieves the cross-modal challenge in geometric-based matching that prevented prior work to tackle localization in a realistic environment. With additional careful architecture design, GoMatch improves over prior geometric-based matching work with a reduction of (10.67m,95.7deg) and (1.43m, 34.7deg) in average median pose errors on Cambridge Landmarks and 7-Scenes, while requiring as little as 1.5/1.7% of storage capacity in comparison to the best visual-based matching methods. This confirms its potential and feasibility for real-world localization and opens the door to future efforts in advancing city-scale visual localization methods that do not require storing visual descriptors.Comment: ECCV2022 Camera Read

    You are here! Finding position and orientation on a 2D map from a single image: The Flatlandia localization problem and dataset

    Full text link
    We introduce Flatlandia, a novel problem for visual localization of an image from object detections composed of two specific tasks: i) Coarse Map Localization: localizing a single image observing a set of objects in respect to a 2D map of object landmarks; ii) Fine-grained 3DoF Localization: estimating latitude, longitude, and orientation of the image within a 2D map. Solutions for these new tasks exploit the wide availability of open urban maps annotated with GPS locations of common objects (\eg via surveying or crowd-sourced). Such maps are also more storage-friendly than standard large-scale 3D models often used in visual localization while additionally being privacy-preserving. As existing datasets are unsuited for the proposed problem, we provide the Flatlandia dataset, designed for 3DoF visual localization in multiple urban settings and based on crowd-sourced data from five European cities. We use the Flatlandia dataset to validate the complexity of the proposed tasks

    A review of privacy-preserving human and human activity recognition

    Get PDF

    The Need for Inherently Privacy-Preserving Vision in Trustworthy Autonomous Systems

    Full text link
    Vision is a popular and effective sensor for robotics from which we can derive rich information about the environment: the geometry and semantics of the scene, as well as the age, gender, identity, activity and even emotional state of humans within that scene. This raises important questions about the reach, lifespan, and potential misuse of this information. This paper is a call to action to consider privacy in the context of robotic vision. We propose a specific form privacy preservation in which no images are captured or could be reconstructed by an attacker even with full remote access. We present a set of principles by which such systems can be designed, and through a case study in localisation demonstrate in simulation a specific implementation that delivers an important robotic capability in an inherently privacy-preserving manner. This is a first step, and we hope to inspire future works that expand the range of applications open to sighted robotic systems.Comment: 7 pages, 6 figure

    Privacy-Preserving Visual Localization with Event Cameras

    Full text link
    We present a robust, privacy-preserving visual localization algorithm using event cameras. While event cameras can potentially make robust localization due to high dynamic range and small motion blur, the sensors exhibit large domain gaps making it difficult to directly apply conventional image-based localization algorithms. To mitigate the gap, we propose applying event-to-image conversion prior to localization which leads to stable localization. In the privacy perspective, event cameras capture only a fraction of visual information compared to normal cameras, and thus can naturally hide sensitive visual details. To further enhance the privacy protection in our event-based pipeline, we introduce privacy protection at two levels, namely sensor and network level. Sensor level protection aims at hiding facial details with lightweight filtering while network level protection targets hiding the entire user's view in private scene applications using a novel neural network inference pipeline. Both levels of protection involve light-weight computation and incur only a small performance loss. We thus project our method to serve as a building block for practical location-based services using event cameras. The code and dataset will be made public through the following link: https://github.com/82magnolia/event_localization
    • …
    corecore