322 research outputs found

    Biometric and Physical Identifiers with Correlated Noise for Controllable Private Authentication

    Get PDF
    The problem of secret-key based authentication under privacy and storage constraints on the source sequence is considered. The identifier measurement channels during authentication are assumed to be controllable via a cost-constrained action sequence. Single-letter inner and outer bounds for the key-leakage-storage-cost regions are derived for a generalization of a classic two-terminal key agreement model with an eavesdropper that observes a sequence that is correlated with the sequences observed by the legitimate terminals. The additions to the model are that the encoder observes a noisy version of a remote source, and the noisy output and the remote source output together with an action sequence are given as inputs to the measurement channel at the decoder. Thus, correlation is introduced between the noise components on the encoder and decoder measurements. The model with a secret key generated by an encoder is extended to the randomized models, where a secret-key is embedded to the encoder. The results are relevant for several user and device authentication scenarios including physical and biometric identifiers with multiple measurements that provide diversity and multiplexing gains. To illustrate the behavior of the rate region, achievable (secret-key rate, storage-rate, cost) tuples are given for binary identifiers and measurement channels that can be represented as a mixture of binary symmetric subchannels. The gains from using an action sequence such as a large secret-key rate at a significantly small hardware cost, are illustrated to motivate the use of low-complexity transform-coding algorithms with cost-constrained actions.Comment: Shorter version to appear in the IEEE International Symposium on Information Theory 202

    Key Agreement with Correlated Noise and Multiple Entities or Enrollments

    Get PDF
    We extend a basic key agreement model with a hidden identifier source to a multi-user model with joint secrecy and privacy constraints over all entities that do not trust each other. Different entities that use different measurements of the same remote source through broadcast channels (BCs) to agree on mutually-independent local secret keys are considered. This model is the proper multi-user extension of the basic model since the encoder and decoder pairs are not assumed to trust other pairs, unlike assumed in the literature. Strong secrecy constraints imposed jointly on all secret keys, which is more stringent than separate secrecy leakage constraints for each secret key considered in the literature, are satisfied. Inner bounds for maximum key rate, and minimum privacy-leakage and storage rates are proposed for any finite number of entities. Inner and outer bounds for degraded and less-noisy BCs are given to illustrate cases with strong privacy. A multi-enrollment model that is used for common physical unclonable functions (PUFs) is also considered to establish inner and outer bounds for key-leakage-storage regions that differ only in the Markov chains imposed. For this special case, the encoder and decoder measurement channels have the same channel transition matrix and secrecy leakage is measured for each secret key separately. We illustrate cases for which it is useful to have multiple enrollments as compared to a single enrollment and vice versa
    • …
    corecore