6,343 research outputs found

    Improved Noisy Student Training for Automatic Speech Recognition

    Full text link
    Recently, a semi-supervised learning method known as "noisy student training" has been shown to improve image classification performance of deep networks significantly. Noisy student training is an iterative self-training method that leverages augmentation to improve network performance. In this work, we adapt and improve noisy student training for automatic speech recognition, employing (adaptive) SpecAugment as the augmentation method. We find effective methods to filter, balance and augment the data generated in between self-training iterations. By doing so, we are able to obtain word error rates (WERs) 4.2%/8.6% on the clean/noisy LibriSpeech test sets by only using the clean 100h subset of LibriSpeech as the supervised set and the rest (860h) as the unlabeled set. Furthermore, we are able to achieve WERs 1.7%/3.4% on the clean/noisy LibriSpeech test sets by using the unlab-60k subset of LibriLight as the unlabeled set for LibriSpeech 960h. We are thus able to improve upon the previous state-of-the-art clean/noisy test WERs achieved on LibriSpeech 100h (4.74%/12.20%) and LibriSpeech (1.9%/4.1%).Comment: 5 pages, 5 figures, 4 tables; v2: minor revisions, reference adde

    Automatic Curriculum Learning For Deep RL: A Short Survey

    Full text link
    Automatic Curriculum Learning (ACL) has become a cornerstone of recent successes in Deep Reinforcement Learning (DRL).These methods shape the learning trajectories of agents by challenging them with tasks adapted to their capacities. In recent years, they have been used to improve sample efficiency and asymptotic performance, to organize exploration, to encourage generalization or to solve sparse reward problems, among others. The ambition of this work is dual: 1) to present a compact and accessible introduction to the Automatic Curriculum Learning literature and 2) to draw a bigger picture of the current state of the art in ACL to encourage the cross-breeding of existing concepts and the emergence of new ideas.Comment: Accepted at IJCAI202

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    Learning Curricula in Open-Ended Worlds

    Get PDF
    Deep reinforcement learning (RL) provides powerful methods for training optimal sequential decision-making agents. As collecting real-world interactions can entail additional costs and safety risks, the common paradigm of sim2real conducts training in a simulator, followed by real-world deployment. Unfortunately, RL agents easily overfit to the choice of simulated training environments, and worse still, learning ends when the agent masters the specific set of simulated environments. In contrast, the real-world is highly open-ended—featuring endlessly evolving environments and challenges, making such RL approaches unsuitable. Simply randomizing across a large space of simulated environments is insufficient, as it requires making arbitrary distributional assumptions, and as the design space grows, it can become combinatorially less likely to sample specific environment instances that are useful for learning. An ideal learning process should automatically adapt the training environment to maximize the learning potential of the agent over an open-ended task space that matches or surpasses the complexity of the real world. This thesis develops a class of methods called Unsupervised Environment Design (UED), which seeks to enable such an open-ended process via a principled approach for gradually improving the robustness and generality of the learning agent. Given a potentially open-ended environment design space, UED automatically generates an infinite sequence or curriculum of training environments at the frontier of the learning agent’s capabilities. Through both extensive empirical studies and theoretical arguments founded on minimax-regret decision theory and game theory, the findings in this thesis show that UED autocurricula can produce RL agents exhibiting significantly improved robustness and generalization to previously unseen environment instances. Such autocurricula are promising paths toward open-ended learning systems that approach general intelligence—a long sought-after ambition of artificial intelligence research—by continually generating and mastering additional challenges of their own design

    Replay-Guided Adversarial Environment Design

    Get PDF
    Deep reinforcement learning (RL) agents may successfully generalize to new settings if trained on an appropriately diverse set of environment and task configurations. Unsupervised Environment Design (UED) is a promising self-supervised RL paradigm, wherein the free parameters of an underspecified environment are automatically adapted during training to the agent's capabilities, leading to the emergence of diverse training environments. Here, we cast Prioritized Level Replay (PLR), an empirically successful but theoretically unmotivated method that selectively samples randomly-generated training levels, as UED. We argue that by curating completely random levels, PLR, too, can generate novel and complex levels for effective training. This insight reveals a natural class of UED methods we call Dual Curriculum Design (DCD). Crucially, DCD includes both PLR and a popular UED algorithm, PAIRED, as special cases and inherits similar theoretical guarantees. This connection allows us to develop novel theory for PLR, providing a version with a robustness guarantee at Nash equilibria. Furthermore, our theory suggests a highly counterintuitive improvement to PLR: by stopping the agent from updating its policy on uncurated levels (training on less data), we can improve the convergence to Nash equilibria. Indeed, our experiments confirm that our new method, PLR ⊥ , obtains better results on a suite of out-of-distribution, zero-shot transfer tasks, in addition to demonstrating that PLR ⊥ improves the performance of PAIRED, from which it inherited its theoretical framework
    • …
    corecore