4 research outputs found

    On the Value of Multistage Risk-Averse Stochastic Facility Location With or Without Prioritization

    Full text link
    We consider a multiperiod stochastic capacitated facility location problem under uncertain demand and budget in each period. Using a scenario tree representation of the uncertainties, we formulate a multistage stochastic integer program to dynamically locate facilities in each period and compare it with a two-stage approach that determines the facility locations up front. In the multistage model, in each stage, a decision maker optimizes facility locations and recourse flows from open facilities to demand sites, to minimize certain risk measures of the cost associated with current facility location and shipment decisions. When the budget is also uncertain, a popular modeling framework is to prioritize the candidate sites. In the two-stage model, the priority list is decided in advance and fixed through all periods, while in the multistage model, the priority list can change adaptively. In each period, the decision maker follows the priority list to open facilities according to the realized budget, and optimizes recourse flows given the realized demand. Using expected conditional risk measures (ECRMs), we derive tight lower bounds for the gaps between the optimal objective values of risk-averse multistage models and their two-stage counterparts in both settings with and without prioritization. Moreover, we propose two approximation algorithms to efficiently solve risk-averse two-stage and multistage models without prioritization, which are asymptotically optimal under an expanding market assumption. We also design a set of super-valid inequalities for risk-averse two-stage and multistage stochastic programs with prioritization to reduce the computational time. We conduct numerical studies using both randomly generated and real-world instances with diverse sizes, to demonstrate the tightness of the analytical bounds and efficacy of the approximation algorithms and prioritization cuts

    A test score based approach to stochastic submodular optimization

    Get PDF
    We study the canonical problem of maximizing a stochastic submodular function subject to a cardinality constraint, where the goal is to select a subset from a ground set of items with uncertain individual perfor- mances to maximize their expected group value. Although near-optimal algorithms have been proposed for this problem, practical concerns regarding scalability, compatibility with distributed implementation, and expensive oracle queries persist in large-scale applications. Motivated by online platforms that rely on indi- vidual item scores for content recommendation and team selection, we study a special class of algorithms that select items based solely on individual performance measures known as test scores. The central contribution of this work is a novel and systematic framework for designing test score based algorithms for a broad class of naturally occurring utility functions. We introduce a new scoring mechanism that we refer to as replication test scores and prove that as long as the objective function satisfies a diminishing returns condition, one can leverage these scores to compute solutions that are within a constant factor of the optimum. We then extend these scoring mechanisms to the more general stochastic submodular welfare maximization problem, where the goal is to partition items into groups to maximize the sum of the expected group values. For this more difficult problem, we show that replication test scores can be used to develop an algorithm that approximates the optimum solution up to a logarithmic factor. The techniques presented in this work bridge the gap between the rigorous theoretical work on submodular optimization and simple, scalable heuristics that are useful in certain domains. In particular, our results establish that in many applications involving the selection and assignment of items, one can design algorithms that are intuitive and practically relevant with only a small loss in performance compared to the state-of-the-art approaches

    Supporting Cross-sectoral Infrastructure Investment Planning

    Get PDF
    corecore