1,089,180 research outputs found

    Measurement error caused by spatial misalignment in environmental epidemiology

    Get PDF
    Copyright @ 2009 Gryparis et al - Published by Oxford University Press.In many environmental epidemiology studies, the locations and/or times of exposure measurements and health assessments do not match. In such settings, health effects analyses often use the predictions from an exposure model as a covariate in a regression model. Such exposure predictions contain some measurement error as the predicted values do not equal the true exposures. We provide a framework for spatial measurement error modeling, showing that smoothing induces a Berkson-type measurement error with nondiagonal error structure. From this viewpoint, we review the existing approaches to estimation in a linear regression health model, including direct use of the spatial predictions and exposure simulation, and explore some modified approaches, including Bayesian models and out-of-sample regression calibration, motivated by measurement error principles. We then extend this work to the generalized linear model framework for health outcomes. Based on analytical considerations and simulation results, we compare the performance of all these approaches under several spatial models for exposure. Our comparisons underscore several important points. First, exposure simulation can perform very poorly under certain realistic scenarios. Second, the relative performance of the different methods depends on the nature of the underlying exposure surface. Third, traditional measurement error concepts can help to explain the relative practical performance of the different methods. We apply the methods to data on the association between levels of particulate matter and birth weight in the greater Boston area.This research was supported by NIEHS grants ES012044 (AG, BAC), ES009825 (JS, BAC), ES007142 (CJP), and ES000002 (CJP), and EPA grant R-832416 (JS, BAC)

    Intrinsic point defects and volume swelling in ZrSiO4 under irradiation

    Full text link
    The effects of high concentration of point defects in crystalline ZrSiO4 as originated by exposure to radiation, have been simulated using first principles density functional calculations. Structural relaxation and vibrational studies were performed for a catalogue of intrinsic point defects, with different charge states and concentrations. The experimental evidence of a large anisotropic volume swelling in natural and artificially irradiated samples is used to select the subset of defects that give similar lattice swelling for the concentrations studied, namely interstitials of O and Si, and the anti-site Zr(Si), Calculated vibrational spectra for the interstitials show additional evidence for the presence of high concentrations of some of these defects in irradiated zircon.Comment: 9 pages, 7 (color) figure

    Occupational screening

    Get PDF
    Medical screening of workers is one of the tools often used to assess suitability for work and to attempt to reduce worker ill-health. This article outlines the objectives of the screening process and the basic criteria to be followed in developing a quality programme. It describes the different types of medical examination used in this setting. Screening programmes should be related to hazards specific to the work place as well as to the physical and mental requirements of the job. The guiding principle in the prevention of occupational disease should always be the control of hazardous exposure to prevent harmful effects occurring rather than early detection of harmful effects after they have occurred. The importance of being aware of and abiding by these principles is particularly applicable in the local context.peer-reviewe

    Response versus Chain Length of Alkanethiol-Capped Au Nanoparticle Chemiresistive Chemical Vapor Sensors

    Get PDF
    Au nanoparticles capped with a homologous series of straight chain alkanethiols (containing 4−11 carbons in length) have been investigated as chemiresistive organic vapor sensors. The series of alkanethiols was used to elucidate the mechanisms of vapor detection by such capped nanoparticle chemiresistive films and to highlight the molecular design principles that govern enhanced detection. The thiolated Au nanoparticle chemiresistors demonstrated rapid and reversible responses to a set of test vapors (n-hexane, n-heptane, n-octane, iso-octane, cyclohexane, toluene, ethyl acetate, methanol, ethanol, isopropanol, and 1-butanol) that possessed a variety of analyte physicochemical properties. The resistance sensitivity to nonpolar and aprotic polar vapors systematically increased as the chain length of the capping reagent increased. Decreases in the nanoparticle film resistances, which produced negative values of the differential resistance response, were observed upon exposure of the sensor films to alcohol vapors. The response signals became more negative with higher alcohol vapor concentrations, producing negative values of the sensor sensitivity. Sorption data measured on Au nanoparticle chemiresistor films using a quartz crystal microbalance allowed for the measurement of the partition coefficients of test vapors in the Au nanoparticle films. This measurement assumed that analyte sorption only occurred at the organic interface and not the surface of the Au core. Such an assumption produced partition coefficient values that were independent of the length of the ligand. Furthermore, the value of the partition coefficient was used to obtain the particle-to-particle interfacial effective dielectric constant of films upon exposure to analyte vapors. The values of the dielectric constant upon exposure to alcohol vapors suggested that the observed resistance response changes observed were not significantly influenced by this dielectric change, but rather were primarily influenced by morphological changes and by changes in the interparticle spacing

    The Mathematical Facts Of Games Of Chance Between Exposure, Teaching, And Contribution To Cognitive Therapies: Principles Of An Optimal Mathematical Intervention For Responsible Gambling

    Get PDF
    On the question of whether gambling behavior can be changed as result of teaching gamblers the mathematics of gambling, past studies have yielded contradictory results, and a clear conclusion has not yet been drawn. In this paper, I bring some criticisms to the empirical studies that tended to answer no to this hypothesis, regarding the sampling and laboratory testing, and I argue that an optimal mathematical scholastic intervention with the objective of preventing problem gambling is possible, by providing the principles that would optimize the structure and content of the teaching module. Given the ethical aspects of the exposure of mathematical facts behind games of chance, and starting from the slots case – where the parametric design is missing, we have to draw a line between ethical and optional information with respect to the mathematical content provided by a scholastic intervention. Arguing for the role of mathematics in problem-gambling prevention and treatment, interdisciplinary research directions are drawn toward implementing an optimal mathematical module in cognitive therapies

    Disturbances, robustness and adaptation in forest commons: comparative insights from two cases in the Southeastern Alps

    Get PDF
    Exposure to disturbances of different nature and scale can represent a threat for the survival of rural communities but also a stimulus to adjustment. Disturbance, robustness and adaptation are here examined through the lens of Forest Commons, as a typical institution, developed by communities in the southeastern Alps since several centuries. The paper relies on Commons' theory and further developments and carries out a historically-embedded analysis of disturbances, robustness and adaptation in Forest Commons of Slovenia and Veneto (Italy). Data have been drawn from multiple sources, following an approach based on an area scale and later on case-studies. The analysis focuses on evidence of Forest Commons\ub4 reactions to disturbances induced by political changes and State actions. Ostrom's design principles are used to test robustness of eight selected cases and identification of their adaptation patterns. The paper concludes by confirming Forest Commons as robust and adaptive socio-ecological systems and thus useful in Community Forestry conceptualisation. However, thanks to its cross-border analysis, it also points out future research needs for their better understanding

    The Formal Underpinnings of the Response Functions used in X-Ray Spectral Analysis

    Get PDF
    This work provides an in-depth mathematical description of the response functions that are used for spatial and spectral analysis of X-ray data. The use of such functions is well-known to anyone familiar with the analysis of X-ray data where they may be identified with the quantities contained in the Ancillary Response File (ARF), the Redistribution Matrix File (RMF), and the Exposure Map. Starting from first-principles, explicit mathematical expressions for these functions, for both imaging and dispersive modes, are arrived at in terms of the underlying instrumental characteristics of the telescope including the effects of pointing motion. The response functions are presented in the context of integral equations relating the expected detector count rate to the source spectrum incident upon the telescope. Their application to the analysis of several source distributions is considered. These include multiple, possibly overlapping, and spectrally distinct point sources, as well as extended sources. Assumptions and limitations behind the usage of these functions, as well as their practical computation are addressed.Comment: 22 pages, 3 figures (LaTeX
    corecore