2 research outputs found

    Principled Hybrids of Generative and Discriminative Domain Adaptation

    Full text link
    We propose a probabilistic framework for domain adaptation that blends both generative and discriminative modeling in a principled way. Under this framework, generative and discriminative models correspond to specific choices of the prior over parameters. This provides us a very general way to interpolate between generative and discriminative extremes through different choices of priors. By maximizing both the marginal and the conditional log-likelihoods, models derived from this framework can use both labeled instances from the source domain as well as unlabeled instances from both source and target domains. Under this framework, we show that the popular reconstruction loss of autoencoder corresponds to an upper bound of the negative marginal log-likelihoods of unlabeled instances, where marginal distributions are given by proper kernel density estimations. This provides a way to interpret the empirical success of autoencoders in domain adaptation and semi-supervised learning. We instantiate our framework using neural networks, and build a concrete model, DAuto. Empirically, we demonstrate the effectiveness of DAuto on text, image and speech datasets, showing that it outperforms related competitors when domain adaptation is possible

    MTS-CycleGAN: An Adversarial-based Deep Mapping Learning Network for Multivariate Time Series Domain Adaptation Applied to the Ironmaking Industry

    Full text link
    In the current era, an increasing number of machine learning models is generated for the automation of industrial processes. To that end, machine learning models are trained using historical data of each single asset leading to the development of asset-based models. To elevate machine learning models to a higher level of learning capability, domain adaptation has opened the door for extracting relevant patterns from several assets combined together. In this research we are focusing on translating the specific asset-based historical data (source domain) into data corresponding to one reference asset (target domain), leading to the creation of a multi-assets global dataset required for training domain invariant generic machine learning models. This research is conducted to apply domain adaptation to the ironmaking industry, and particularly for the creation of a domain invariant dataset by gathering data from different blast furnaces. The blast furnace data is characterized by multivariate time series. Domain adaptation for multivariate time series data hasn't been covered extensively in the literature. We propose MTS-CycleGAN, an algorithm for Multivariate Time Series data based on CycleGAN. To the best of our knowledge, this is the first time CycleGAN is applied on multivariate time series data. Our contribution is the integration in the CycleGAN architecture of a Long Short-Term Memory (LSTM)-based AutoEncoder (AE) for the generator and a stacked LSTM-based discriminator, together with dedicated extended features extraction mechanisms. MTS-CycleGAN is validated using two artificial datasets embedding the complex temporal relations between variables reflecting the blast furnace process. MTS-CycleGAN is successfully learning the mapping between both artificial multivariate time series datasets, allowing an efficient translation from a source to a target artificial blast furnace dataset
    corecore