2 research outputs found

    Principle Research on a Novel Piezoelectric 12-DOF Force/Acceleration Sensor

    Get PDF
    This study proposes a new piezoelectric 12-DOF force/acceleration sensor structure to measure forces, torques, and accelerations, during a robot’s space motion. The study involves analyzing the operating principle and structural characteristics in order to obtain the model structure of a sensor. The mechanical diagram of the sensor was drawn based on the structural parameters of a piezoelectric 12-DOF force/acceleration sensor, and a numerical simulation model was established. The sensor utilizes piezoelectric quartz, of different cutting types, as the sensing and conversion element. Additionally, ANSYS was used to study the static sensitivity, crossing couplings, natural frequency, and other characteristics. The research results indicate that the piezoelectric 12-DOF force/acceleration sensor has many advantages, which include a simple structure, high integration, good linearity, and dynamic characteristics. The sensor’s operating principle is accurate, and the crossing couplings correspond to linear coupling. The results of the static characteristic analysis are consistent with the structural model. The natural frequencies exceed 11 kHz, and the relative errors of output data are less than 1%, with respect to the decoupling calculation

    Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    No full text
    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work
    corecore