7,992 research outputs found

    The Significance of Multiple Saturation Points in the Context of Polybaric Near-fractional Melting

    Get PDF
    Experimental petrologists have successfully located basaltic liquid compositions parental to mid-ocean ridge basalt that are, within experimental resolution, multiply saturated with three-phase harzburgite or four-phase lherzolite assemblages on their liquidus at some elevated pressure. Such an experimental result is a necessary consequence of any paradigm in which erupted basalts derive from single-batch primary liquids that equilibrate with a mantle residue and undergo no subsequent magma mixing before differentiation and eruption. Here we investigate whether, conversely, such evidence of multiple saturation is sufficient to exclude dynamic melting models wherein increments of melt are mixed after segregation from residues, during melt transport or in magma chambers. Using two independent models of crystal–liquid equilibria to simulate polybaric near-fractional peridotite melting, we find that aggregate liquids from such melting processes can display near-intersections of liquidus surfaces too close to distinguish experimentally from exact multiple saturation points. Given uncertainties in glass compositions, fractionation corrections, experimental temperature and pressure conditions, and achievement of equilibrium, these results suggest that polybaric mixtures can in fact masquerade as mantle-equilibrated single-batch primary liquids. Multiple saturation points on the liquidus surfaces of primitive basalts do, however, preserve information about the average pressure of extraction of their constituent increments of liquid

    Gap Processing for Adaptive Maximal Poisson-Disk Sampling

    Full text link
    In this paper, we study the generation of maximal Poisson-disk sets with varying radii. First, we present a geometric analysis of gaps in such disk sets. This analysis is the basis for maximal and adaptive sampling in Euclidean space and on manifolds. Second, we propose efficient algorithms and data structures to detect gaps and update gaps when disks are inserted, deleted, moved, or have their radius changed. We build on the concepts of the regular triangulation and the power diagram. Third, we will show how our analysis can make a contribution to the state-of-the-art in surface remeshing.Comment: 16 pages. ACM Transactions on Graphics, 201

    A Cognitive Science Based Machine Learning Architecture

    Get PDF
    In an attempt to illustrate the application of cognitive science principles to hard AI problems in machine learning we propose the LIDA technology, a cognitive science based architecture capable of more human-like learning. A LIDA based software agent or cognitive robot will be capable of three fundamental, continuously active, humanlike learning mechanisms:\ud 1) perceptual learning, the learning of new objects, categories, relations, etc.,\ud 2) episodic learning of events, the what, where, and when,\ud 3) procedural learning, the learning of new actions and action sequences with which to accomplish new tasks. The paper argues for the use of modular components, each specializing in implementing individual facets of human and animal cognition, as a viable approach towards achieving general intelligence

    A fast voxelization algorithm for trilinearly interpolated isosurfaces

    Get PDF
    International audienceIn this work we propose a new method for a fast incremental voxelization of isosurfaces obtained by the trilinear interpolation of 3D data. Our objective consists in the fast generation of subvoxelized iso-surfaces extracted by a point-based technique similar to the Dividing Cubes algorithm. Our technique involves neither an exhaustive scan search process nor a graph-based search approach when generating iso-surface points. Instead an optimized incremental approach is adopted here for a rapid isosurface extraction. With a sufficient sampling subdivision criteria around critical points, the extracted isosurface is both correct and topologically consistent with respect to the piece-wise trilinear interpolant. Furthermore, the discretiza-tion scheme used in our method ensures obtaining thin-one voxel width-isosurfaces as compared to the given by the Dividing Cubes algorithm. The resultant sub-voxelized isosurfaces are efficiently tested against all possible configurations of the trilinear interpolant and real-world datasets

    A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores

    Get PDF
    The major element, trace element, and isotopic composition of mid-ocean ridge basalt glasses affected by the Azores hotspot are strongly correlated with H2O content of the glass. Distinguishing the relative importance of source chemistry and potential temperature in ridge-hotspot interaction therefore requires a comprehensive model that accounts for the effect of H2O in the source on melting behavior and for the effect of H2O in primitive liquids on the fractionation path. We develop such a model by coupling the latest version of the MELTS algorithm to a model for partitioning of water among silicate melts and nominally anhydrous minerals. We find that much of the variation in all major oxides except TiO2 and a significant fraction of the crustal thickness anomaly at the Azores platform are explained by the combined effects on melting and fractionation of up to ~700 ppm H2O in the source with only a small thermal anomaly, particularly if there is a small component of buoyantly driven active flow associated with the more H2O-rich melting regimes. An on-axis thermal anomaly of ~35Β°C in potential temperature explains the full crustal thickness increase of ~4 km approaching the Azores platform, whereas a β‰₯75Β°C thermal anomaly would be required in the absence of water or active flow. The polybaric hydrous melting and fractionation model allows us to solve for the TiO2, trace element and isotopic composition of the H2O-rich component in a way that self-consistently accounts for the changes in the melting and fractionation regimes resulting from enrichment, although the presence and concentration in the enriched component of elements more compatible than Dy cannot be resolved

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware
    • …
    corecore