171 research outputs found

    Classification of Supersymmetric Flux Vacua in M Theory

    Full text link
    We present a comprehensive classification of supersymmetric vacua of M-theory compactification on seven-dimensional manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1,2,3,4 supersymmetry and the internal space allows for SU(2), SU(3) or G_2 structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally K\"ahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved.Comment: 50 pages, clarification of the spinor ansatz added, references added, typos correcte

    Highly Unsaturated Binuclear Butadiene Iron Carbonyls: Quintet Spin States, Perpendicular Structures, Agostic Hydrogen Atoms, and Iron-Iron Multiple Bonds

    Get PDF
    The highly unsaturated binuclear butadiene iron carbonyls (C4H6)2Fe2(CO)n (n = 2, 1) have been examined using density functional theory. For (C4H6)2Fe2(CO)n (n = 2, 1), both coaxial and perpendicular structures are found. The global minima of (C4H6)2Fe2(CO)n (n = 2, 1) are the perpendicular structures 2Q-1 and 1Q-1, respectively, with 17- and 15-electron configurations for the iron atoms leading to quintet spin states. The Fe=Fe distance of 2.361 Å (M06-L) in the (C4H6)2Fe2(CO)2 structure 2Q-1 suggests a formal double bond. The Fe≡Fe bond distance in the (C4H6)2Fe2(CO) structure 1Q-1 is even shorter at 2.273 Å (M06-L), suggesting a triple bond. Higher energy (C4H6)2Fe2(CO)n (n = 2, 1) structures include structures in which a bridging butadiene ligand is bonded to one of the iron atoms as a tetrahapto ligand and to the other iron atom through two agostic hydrogen atoms from the end CH2 groups. Singlet (C4H6)2Fe2(CO) structures with formal Fe–Fe quadruple bonds of lengths ∌2.05 Å were also found but at very high energies (∌47 kcal/mol) relative to the global minimum

    Pairing-based algorithms for jacobians of genus 2 curves with maximal endomorphism ring

    Get PDF
    Using Galois cohomology, Schmoyer characterizes cryptographic non-trivial self-pairings of the ℓ\ell-Tate pairing in terms of the action of the Frobenius on the ℓ\ell-torsion of the Jacobian of a genus 2 curve. We apply similar techniques to study the non-degeneracy of the ℓ\ell-Tate pairing restrained to subgroups of the ℓ\ell-torsion which are maximal isotropic with respect to the Weil pairing. First, we deduce a criterion to verify whether the jacobian of a genus 2 curve has maximal endomorphism ring. Secondly, we derive a method to construct horizontal (ℓ,ℓ)(\ell,\ell)-isogenies starting from a jacobian with maximal endomorphism ring

    New supersymmetric AdS4 type II vacua

    Full text link
    Building on our recent results on dynamic SU(3)xSU(3) structures we present a set of sufficient conditions for supersymmetric AdS4xM6 backgrounds of type IIA/IIB supergravity. These conditions ensure that the background solves, besides the supersymmetry equations, all the equations of motion of type II supergravity. The conditions state that the internal manifold is locally a codimension-one foliation such that the five dimensional leaves admit a Sasaki-Einstein structure. In type IIA the supersymmetry is N=2, and the total six-dimensional internal space is locally an S^2 bundle over a four-dimensional Kaehler-Einstein base; in IIB the internal space is the direct product of a circle and a five-dimensional squashed Sasaki-Einstein manifold. Given any five-dimensional Sasaki-Einstein manifold we construct the corresponding families of type IIA/IIB vacua. The precise profiles of all the fields are determined at the solution and depend on whether one is in IIA or in IIB. In particular the background does not contain any sources, all fluxes (including the Romans mass in IIA) are generally non-zero, and the dilaton and warp factor are non-constant.Comment: 19 pages; clarifications added, version to appear in JHE

    Superstrings with Intrinsic Torsion

    Get PDF
    We systematically analyse the necessary and sufficient conditions for the preservation of supersymmetry for bosonic geometries of the form R^{1,9-d} \times M_d, in the common NS-NS sector of type II string theory and also type I/heterotic string theory. The results are phrased in terms of the intrinsic torsion of G-structures and provide a comprehensive classification of static supersymmetric backgrounds in these theories. Generalised calibrations naturally appear since the geometries always admit NS or type I/heterotic fivebranes wrapping calibrated cycles. Some new solutions are presented. In particular we find d=6 examples with a fibred structure which preserve N=1,2,3 supersymmetry in type II and include compact type I/heterotic geometries.Comment: 58 pages, LaTeX; v2: New section on solutions including an example with N=3 supersymmetry and discussion of heterotic compactifications. Details on conventions and references added. v3: added an explicit example of non-integrable product structure in Appendix C; some typos fixe
    • 

    corecore