3,061 research outputs found

    Price of Anarchy in Bernoulli Congestion Games with Affine Costs

    Full text link
    We consider an atomic congestion game in which each player participates in the game with an exogenous and known probability pi[0,1]p_{i}\in[0,1], independently of everybody else, or stays out and incurs no cost. We first prove that the resulting game is potential. Then, we compute the parameterized price of anarchy to characterize the impact of demand uncertainty on the efficiency of selfish behavior. It turns out that the price of anarchy as a function of the maximum participation probability p=maxipip=\max_{i} p_{i} is a nondecreasing function. The worst case is attained when players have the same participation probabilities pipp_{i}\equiv p. For the case of affine costs, we provide an analytic expression for the parameterized price of anarchy as a function of pp. This function is continuous on (0,1](0,1], is equal to 4/34/3 for 0<p1/40<p\leq 1/4, and increases towards 5/25/2 when p1p\to 1. Our work can be interpreted as providing a continuous transition between the price of anarchy of nonatomic and atomic games, which are the extremes of the price of anarchy function we characterize. We show that these bounds are tight and are attained on routing games -- as opposed to general congestion games -- with purely linear costs (i.e., with no constant terms).Comment: 29 pages, 6 figure

    The Price of Anarchy for Minsum Related Machine Scheduling

    Get PDF
    We address the classical uniformly related machine scheduling problem with minsum objective. The problem is solvable in polynomial time by the algorithm of Horowitz and Sahni. In that solution, each machine sequences its jobs shortest first. However when jobs may choose the machine on which they are processed, while keeping the same sequencing rule per machine, the resulting Nash equilibria are in general not optimal. The price of anarchy measures this optimality gap. By means of a new characterization of the optimal solution, we show that the price of anarchy in this setting is bounded from above by 2. We also give a lower bound of e/(e-1). This complements recent results on the price of anarchy for the more general unrelated machine scheduling problem, where the price of anarchy equals 4. Interestingly, as Nash equilibria coincide with shortest processing time first (SPT) schedules, the same bounds hold for SPT schedules. Thereby, our work also fills a gap in the literature
    corecore