7,145 research outputs found

    Measuring Membership Privacy on Aggregate Location Time-Series

    Get PDF
    While location data is extremely valuable for various applications, disclosing it prompts serious threats to individuals' privacy. To limit such concerns, organizations often provide analysts with aggregate time-series that indicate, e.g., how many people are in a location at a time interval, rather than raw individual traces. In this paper, we perform a measurement study to understand Membership Inference Attacks (MIAs) on aggregate location time-series, where an adversary tries to infer whether a specific user contributed to the aggregates. We find that the volume of contributed data, as well as the regularity and particularity of users' mobility patterns, play a crucial role in the attack's success. We experiment with a wide range of defenses based on generalization, hiding, and perturbation, and evaluate their ability to thwart the attack vis-a-vis the utility loss they introduce for various mobility analytics tasks. Our results show that some defenses fail across the board, while others work for specific tasks on aggregate location time-series. For instance, suppressing small counts can be used for ranking hotspots, data generalization for forecasting traffic, hotspot discovery, and map inference, while sampling is effective for location labeling and anomaly detection when the dataset is sparse. Differentially private techniques provide reasonable accuracy only in very specific settings, e.g., discovering hotspots and forecasting their traffic, and more so when using weaker privacy notions like crowd-blending privacy. Overall, our measurements show that there does not exist a unique generic defense that can preserve the utility of the analytics for arbitrary applications, and provide useful insights regarding the disclosure of sanitized aggregate location time-series

    Iterated filtering methods for Markov process epidemic models

    Full text link
    Dynamic epidemic models have proven valuable for public health decision makers as they provide useful insights into the understanding and prevention of infectious diseases. However, inference for these types of models can be difficult because the disease spread is typically only partially observed e.g. in form of reported incidences in given time periods. This chapter discusses how to perform likelihood-based inference for partially observed Markov epidemic models when it is relatively easy to generate samples from the Markov transmission model while the likelihood function is intractable. The first part of the chapter reviews the theoretical background of inference for partially observed Markov processes (POMP) via iterated filtering. In the second part of the chapter the performance of the method and associated practical difficulties are illustrated on two examples. In the first example a simulated outbreak data set consisting of the number of newly reported cases aggregated by week is fitted to a POMP where the underlying disease transmission model is assumed to be a simple Markovian SIR model. The second example illustrates possible model extensions such as seasonal forcing and over-dispersion in both, the transmission and observation model, which can be used, e.g., when analysing routinely collected rotavirus surveillance data. Both examples are implemented using the R-package pomp (King et al., 2016) and the code is made available online.Comment: This manuscript is a preprint of a chapter to appear in the Handbook of Infectious Disease Data Analysis, Held, L., Hens, N., O'Neill, P.D. and Wallinga, J. (Eds.). Chapman \& Hall/CRC, 2018. Please use the book for possible citations. Corrected typo in the references and modified second exampl

    Scalable Inference for Markov Processes with Intractable Likelihoods

    Full text link
    Bayesian inference for Markov processes has become increasingly relevant in recent years. Problems of this type often have intractable likelihoods and prior knowledge about model rate parameters is often poor. Markov Chain Monte Carlo (MCMC) techniques can lead to exact inference in such models but in practice can suffer performance issues including long burn-in periods and poor mixing. On the other hand approximate Bayesian computation techniques can allow rapid exploration of a large parameter space but yield only approximate posterior distributions. Here we consider the combined use of approximate Bayesian computation (ABC) and MCMC techniques for improved computational efficiency while retaining exact inference on parallel hardware

    Pseudospectral Model Predictive Control under Partially Learned Dynamics

    Full text link
    Trajectory optimization of a controlled dynamical system is an essential part of autonomy, however many trajectory optimization techniques are limited by the fidelity of the underlying parametric model. In the field of robotics, a lack of model knowledge can be overcome with machine learning techniques, utilizing measurements to build a dynamical model from the data. This paper aims to take the middle ground between these two approaches by introducing a semi-parametric representation of the underlying system dynamics. Our goal is to leverage the considerable information contained in a traditional physics based model and combine it with a data-driven, non-parametric regression technique known as a Gaussian Process. Integrating this semi-parametric model with model predictive pseudospectral control, we demonstrate this technique on both a cart pole and quadrotor simulation with unmodeled damping and parametric error. In order to manage parametric uncertainty, we introduce an algorithm that utilizes Sparse Spectrum Gaussian Processes (SSGP) for online learning after each rollout. We implement this online learning technique on a cart pole and quadrator, then demonstrate the use of online learning and obstacle avoidance for the dubin vehicle dynamics.Comment: Accepted but withdrawn from AIAA Scitech 201

    Mathematical techniques for the protection of patient's privacy in medical databases

    Get PDF
    In modern society, keeping the balance between privacy and public access to information is becoming a widespread problem more and more often. Valid data is crucial for many kinds of research, but the public good should not be achieved at the expense of individuals. While creating a central database of patients, the CSIOZ wishes to provide statistical information for selected institutions. However, there are some plans to extend the access by providing the statistics to researchers or even to citizens. This might pose a significant risk of disclosure of some private, sensitive information about individuals. This report proposes some methods to prevent data leaks. One category of suggestions is based on the idea of modifying statistics, so that they would maintain importance for statisticians and at the same time guarantee the protection of patient's privacy. Another group of proposed mechanisms, though sometimes difficult to implement, enables one to obtain precise statistics, while restricting such queries which might reveal sensitive information

    A Stein variational Newton method

    Full text link
    Stein variational gradient descent (SVGD) was recently proposed as a general purpose nonparametric variational inference algorithm [Liu & Wang, NIPS 2016]: it minimizes the Kullback-Leibler divergence between the target distribution and its approximation by implementing a form of functional gradient descent on a reproducing kernel Hilbert space. In this paper, we accelerate and generalize the SVGD algorithm by including second-order information, thereby approximating a Newton-like iteration in function space. We also show how second-order information can lead to more effective choices of kernel. We observe significant computational gains over the original SVGD algorithm in multiple test cases.Comment: 18 pages, 7 figure
    corecore