556,538 research outputs found

    Acoustical modes of arbitrary volumes using NASTRAN transient heat transfer RF9

    Get PDF
    An equivalence between temperature and pressure, heat conduction and stiffness and heat capacity and mass is defined, enabling acoustical modal analysis of arbitrary three dimensional volumes. The transient heat transfer analysis rigid format in NASTRAN, RF9, has been altered providing the acoustical analysis capability. Examples and ALTERs are included

    Integrated Analysis of Pressure Transient Tests in the Gulf of Mexico

    Get PDF
    Imperial Users onl

    Static and dynamic deflection studies of the SRM aft case-nozzle joint

    Get PDF
    The redesign of the joints on the solid rocket motor (SRM) has prompted the need for analyzing the behavior of the joints using several different types of analyses. The types of analyses performed include modal analysis, static analysis, transient response analysis, and base driving response analysis. The forces used in these analyses to drive the mathematical model include SRM internal chamber pressure, nozzle blowout and side forces, shuttle vehicle lift-off dynamics, SRM pressure transient rise curve, gimbal forces and moments, actuator gimbal loads, and vertical and radial bolt preloads. The math model represented the SRM from the aft base tangent point (1,823.95 in) all the way back to the nozzle, where a simplified, tuned nozzle model was attached. The new design used the radial bolts as an additional feature to reduce the gap opening at the aft dome/nozzle fixed housing interface

    Thermal finite-element analysis of space shuttle main engine turbine blade

    Get PDF
    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code

    Analisa Pressure Build Up Test Pada Sumur X Lapangan Y Dengan Metode Horner Manual Dan Ecrin 4.10

    Full text link
    The main purpose of a hydrocarbons well testing or pressure transient analysis is to decide theability of a layer or formation to produce. Pressure transient analysis is basically giving a pressurebalance disorder on well tested. In this final thesis is conducted analysis of well test results atPressure Build Up with method Type Curve Pressure Deritative with help of software Ecrin v4.10and Horner Plot analysis manually

    Analisa Pressure Build Up Dan Interference Test Pada Sumur Alpha Dan “Beta Lapangan X

    Full text link
    The main purpose of a hydrocarbon well test or pressure transient analysis is to determine the ability of a layer or the formation to produce. Transient pressure analysis is basically, to give balance pressure interference on the well tested. Result from this well testing is distinguishable become two functions, that is test to obtain reservoir character by executing pressure build-up test analysis and test to know communicating of flow unit by doing interferencetest with Stegmeier method method.

    Analisa Pressure Build Up Dan Interference Test Pada Sumur Alpha Dan “Beta Lapangan X

    Full text link
    The main purpose of a hydrocarbon well test or pressure transient analysis is to determine the ability of a layer or the formation to produce. Transient pressure analysis is basically, to give balance pressure interference on the well tested. Result from this well testing is distinguishable become two functions, that is test to obtain reservoir character by executing pressure build-up test analysis and test to know communicating of flow unit by doing interferencetest with Stegmeier method method.

    On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond

    Get PDF
    An improved understanding of the divergence-free constraint for the incompressible Navier--Stokes equations leads to the observation that a semi-norm and corresponding equivalence classes of forces are fundamental for their nonlinear dynamics. The recent concept of {\em pressure-robustness} allows to distinguish between space discretisations that discretise these equivalence classes appropriately or not. This contribution compares the accuracy of pressure-robust and non-pressure-robust space discretisations for transient high Reynolds number flows, starting from the observation that in generalised Beltrami flows the nonlinear convection term is balanced by a strong pressure gradient. Then, pressure-robust methods are shown to outperform comparable non-pressure-robust space discretisations. Indeed, pressure-robust methods of formal order kk are comparably accurate than non-pressure-robust methods of formal order 2k2k on coarse meshes. Investigating the material derivative of incompressible Euler flows, it is conjectured that strong pressure gradients are typical for non-trivial high Reynolds number flows. Connections to vortex-dominated flows are established. Thus, pressure-robustness appears to be a prerequisite for accurate incompressible flow solvers at high Reynolds numbers. The arguments are supported by numerical analysis and numerical experiments.Comment: 43 pages, 18 figures, 2 table

    Adaptive feedback analysis and control of programmable stimuli for assessment of cerebrovascular function

    No full text
    The assessment of cerebrovascular regulatory mechanisms often requires flexibly controlled and precisely timed changes in arterial blood pressure (ABP) and/or inspired CO2. In this study, a new system for inducing variations in mean ABP was designed, implemented and tested using programmable sequences and programmable controls to induce pressure changes through bilateral thigh cuffs. The system is also integrated with a computer-controlled switch to select air or a CO2/air mixture to be provided via a face mask. Adaptive feedback control of a pressure generator was required to meet stringent specifications for fast changes, and accuracy in timing and pressure levels applied by the thigh cuffs. The implemented system consists of a PC-based signal analysis/control unit, a pressure control unit and a CO2/air control unit. Initial evaluations were carried out to compare the cuff pressure control performances between adaptive and non-adaptive control configurations. Results show that the adaptive control method can reduce the mean error in sustaining target pressure by 99.57 % and reduce the transient time in pressure increases by 45.21 %. The system has proven a highly effective tool in ongoing research on brain blood flow control

    Operational modal analysis with non stationnary inputs

    Get PDF
    Operational modal analysis (OMA) techniques enable the use of in-situ and uncontrolled vibrations to be used to lead modal analysis of structures. In reality operational vibrations are a combination of numerous excitations sources that are much more complex than a random white noise or a harmonic. Numerous OMA techniques exist like SSI, NExT, FDD and BSS. All these methods are based on the fundamental hypothesis that the input or force applied to the structure to be analyzed is a stationary white noise. For some applications this hypothesis is reasonable. However in numerous situations, the analyzed structure is subject to harmonic and transient forces. Numerous methods and research has enabled to develop methods that are robust to such harmonic contributions. To enable OMA during pressure oscillations in solid rocket boosters, the authors propose to consider transient and harmonic inputs no longer as parasites but as the main force applied to the structure that must be analyzed. This is the case during pressure oscillations in rocket boosters. We propose the use of phase analysis adapted to a transient context to conduct operational modal analysis under a harmonic transient input. This time-based novel OMA method will be exposed. The theoretical developments and algorithmic implementations are exposed. First tests have been conducted on laboratory single degree of freedom setup to validate this new OMA technique and are reported here
    corecore