17,809 research outputs found

    Optimal interval clustering: Application to Bregman clustering and statistical mixture learning

    Full text link
    We present a generic dynamic programming method to compute the optimal clustering of nn scalar elements into kk pairwise disjoint intervals. This case includes 1D Euclidean kk-means, kk-medoids, kk-medians, kk-centers, etc. We extend the method to incorporate cluster size constraints and show how to choose the appropriate kk by model selection. Finally, we illustrate and refine the method on two case studies: Bregman clustering and statistical mixture learning maximizing the complete likelihood.Comment: 10 pages, 3 figure

    Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means

    Full text link
    Bayesian classification labels observations based on given prior information, namely class-a priori and class-conditional probabilities. Bayes' risk is the minimum expected classification cost that is achieved by the Bayes' test, the optimal decision rule. When no cost incurs for correct classification and unit cost is charged for misclassification, Bayes' test reduces to the maximum a posteriori decision rule, and Bayes risk simplifies to Bayes' error, the probability of error. Since calculating this probability of error is often intractable, several techniques have been devised to bound it with closed-form formula, introducing thereby measures of similarity and divergence between distributions like the Bhattacharyya coefficient and its associated Bhattacharyya distance. The Bhattacharyya upper bound can further be tightened using the Chernoff information that relies on the notion of best error exponent. In this paper, we first express Bayes' risk using the total variation distance on scaled distributions. We then elucidate and extend the Bhattacharyya and the Chernoff upper bound mechanisms using generalized weighted means. We provide as a byproduct novel notions of statistical divergences and affinity coefficients. We illustrate our technique by deriving new upper bounds for the univariate Cauchy and the multivariate tt-distributions, and show experimentally that those bounds are not too distant to the computationally intractable Bayes' error.Comment: 22 pages, include R code. To appear in Pattern Recognition Letter

    Discrete-time classical and quantum Markovian evolutions: Maximum entropy problems on path space

    Full text link
    The theory of Schroedinger bridges for diffusion processes is extended to classical and quantum discrete-time Markovian evolutions. The solution of the path space maximum entropy problems is obtained from the a priori model in both cases via a suitable multiplicative functional transformation. In the quantum case, nonequilibrium time reversal of quantum channels is discussed and space-time harmonic processes are introduced.Comment: 34 page
    • …
    corecore