4 research outputs found

    Hybrid Beamforming with Selection for Multi-user Massive MIMO Systems

    Full text link
    This work studies a variant of hybrid beamforming, namely, hybrid beamforming with selection (HBwS), as an attractive solution to reduce the hardware cost of multi-user Massive Multiple-Input-Multiple-Output systems, while retaining good performance. Unlike conventional hybrid beamforming, in a transceiver with HBwS, the antenna array is fed by an analog beamforming matrix with Lˉ\bar{L} input ports, where Lˉ\bar{L} is larger than the number of up/down-conversion chains Kˉ\bar{K}. A bank of switches connects the instantaneously best Kˉ\bar{K} out of the Lˉ\bar{L} input ports to the up/down-conversion chains. The analog beamformer is designed based on average channel statistics and therefore needs to be updated only infrequently, while the switches operate based on instantaneous channel knowledge. HBwS allows use of simpler hardware in the beamformer that only need to adjust to the statistics, while also enabling the effective analog beams to adapt to the instantaneous channel variations via switching. This provides better user separability, beamforming gain, and/or simpler hardware than some conventional hybrid schemes. In this work, a novel design for the analog beamformer is derived and approaches to reduce the hardware and computational cost of a multi-user HBwS system are explored. In addition, we study how Lˉ\bar{L}, the switch bank architecture, the number of users and the channel estimation overhead impact system performance.Comment: Accepted to Transactions on Signal Processin

    Periodic Analog Channel Estimation Aided Beamforming for Massive MIMO Systems

    Full text link
    Analog beamforming is an attractive and cost-effective solution to exploit the benefits of massive multiple-input-multiple-output systems, by requiring only one up/down-conversion chain. However, the presence of only one chain imposes a significant overhead in estimating the channel state information required for beamforming, when conventional digital channel estimation (CE) approaches are used. As an alternative, this paper proposes a novel CE technique, called periodic analog CE (PACE), that can be performed by analog hardware. By avoiding digital processing, the estimation overhead is significantly lowered and does not scale with number of antennas. PACE involves periodic transmission of a sinusoidal reference signal by the transmitter, estimation of its amplitude and phase at each receive antenna via analog hardware, and using these estimates for beamforming. To enable such non-trivial operation, two reference tone recovery techniques and a novel receiver architecture for PACE are proposed and analyzed, both theoretically and via simulations. Results suggest that in sparse, wide-band channels and above a certain signal-to-noise ratio, PACE aided beamforming suffers only a small loss in beamforming gain and enjoys a much lower CE overhead, in comparison to conventional approaches. Benefits of using PACE aided beamforming during the initial access phase are also discussed.Comment: Accepted to IEEE Transactions on Wireless Communications, 201

    Performance of Analog Beamforming Systems with Optimized Phase Noise Compensation

    Full text link
    Millimeter-wave and Terahertz frequencies, while promising high throughput and abundant spectrum, are highly susceptible to hardware non-idealities like phase-noise, which degrade the system performance and make transceiver implementation difficult. While several phase-noise compensation techniques have been proposed, there are limited results on the post-compensation system performance. Consequently, in this paper, a generalized reference-signal (RS) aided low-complexity phase-noise compensation technique is proposed for high-frequency, multi-carrier systems. The technique generalizes several existing solutions and involves an RS that is transmitted in each symbol, occupies adjacent sub-carriers, and is separated from the data by null sub-carriers. A detailed theoretical analysis of the post-phase-noise compensation performance is presented for an analog beamforming receiver under an arbitrary phase-noise model. Using this analysis, the performance-impact of several system parameters is examined and the throughput-optimal designs for the RS sequence, RS bandwidth, power allocation, number of null sub-carriers, and the number of estimated phase-noise spectral components are also derived. Simulations performed under 3GPP compliant settings suggest that the proposed scheme is robust to phase-noise modeling errors and can, with the optimized parameters, achieve better performance than several existing solutions.Comment: To appear in IEEE Transactions on Signal Processing, 202

    Continuous Analog Channel Estimation Aided Beamforming for Massive MIMO Systems

    Full text link
    Analog beamforming greatly reduces the implementation cost of massive antenna transceivers by using only one up/down-conversion chain. However, it incurs a large pilot overhead when used with conventional channel estimation (CE) techniques. This is because these CE techniques involve digital processing, requiring the up/down-conversion chain to be time-multiplexed across the antenna dimensions. This paper introduces a novel CE technique, called continuous analog channel estimation (CACE), that avoids digital processing, enables analog beamforming at the receiver and additionally provides resilience against oscillator phase-noise. By avoiding time-multiplexing of up/down-conversion chains, the CE overhead is reduced significantly and furthermore becomes independent of the number of antenna elements. In CACE, a reference tone is transmitted continuously with the data signals, and the receiver uses the received reference signal as a matched filter for combining the data signals, albeit via analog processing. We propose a receiver architecture for CACE, analyze its performance in the presence of oscillator phase-noise, and derive near-optimal system parameters and power allocation. Transmit beamforming and initial access procedure with CACE are also discussed. Simulations confirm that, in comparison to conventional CE, CACE provides phase-noise resilience and a significant reduction in the CE overhead, while suffering only a small loss in signal-to-interference-plus-noise-ratio.Comment: Accepted to IEEE Transactions on Wireless Communications, 201
    corecore