2,119 research outputs found

    Deep Risk Prediction and Embedding of Patient Data: Application to Acute Gastrointestinal Bleeding

    Get PDF
    Acute gastrointestinal bleeding is a common and costly condition, accounting for over 2.2 million hospital days and 19.2 billion dollars of medical charges annually. Risk stratification is a critical part of initial assessment of patients with acute gastrointestinal bleeding. Although all national and international guidelines recommend the use of risk-assessment scoring systems, they are not commonly used in practice, have sub-optimal performance, may be applied incorrectly, and are not easily updated. With the advent of widespread electronic health record adoption, longitudinal clinical data captured during the clinical encounter is now available. However, this data is often noisy, sparse, and heterogeneous. Unsupervised machine learning algorithms may be able to identify structure within electronic health record data while accounting for key issues with the data generation process: measurements missing-not-at-random and information captured in unstructured clinical note text. Deep learning tools can create electronic health record-based models that perform better than clinical risk scores for gastrointestinal bleeding and are well-suited for learning from new data. Furthermore, these models can be used to predict risk trajectories over time, leveraging the longitudinal nature of the electronic health record. The foundation of creating relevant tools is the definition of a relevant outcome measure; in acute gastrointestinal bleeding, a composite outcome of red blood cell transfusion, hemostatic intervention, and all-cause 30-day mortality is a relevant, actionable outcome that reflects the need for hospital-based intervention. However, epidemiological trends may affect the relevance and effectiveness of the outcome measure when applied across multiple settings and patient populations. Understanding the trends in practice, potential areas of disparities, and value proposition for using risk stratification in patients presenting to the Emergency Department with acute gastrointestinal bleeding is important in understanding how to best implement a robust, generalizable risk stratification tool. Key findings include a decrease in the rate of red blood cell transfusion since 2014 and disparities in access to upper endoscopy for patients with upper gastrointestinal bleeding by race/ethnicity across urban and rural hospitals. Projected accumulated savings of consistent implementation of risk stratification tools for upper gastrointestinal bleeding total approximately $1 billion 5 years after implementation. Most current risk scores were designed for use based on the location of the bleeding source: upper or lower gastrointestinal tract. However, the location of the bleeding source is not always clear at presentation. I develop and validate electronic health record based deep learning and machine learning tools for patients presenting with symptoms of acute gastrointestinal bleeding (e.g., hematemesis, melena, hematochezia), which is more relevant and useful in clinical practice. I show that they outperform leading clinical risk scores for upper and lower gastrointestinal bleeding, the Glasgow Blatchford Score and the Oakland score. While the best performing gradient boosted decision tree model has equivalent overall performance to the fully connected feedforward neural network model, at the very low risk threshold of 99% sensitivity the deep learning model identifies more very low risk patients. Using another deep learning model that can model longitudinal risk, the long-short-term memory recurrent neural network, need for transfusion of red blood cells can be predicted at every 4-hour interval in the first 24 hours of intensive care unit stay for high risk patients with acute gastrointestinal bleeding. Finally, for implementation it is important to find patients with symptoms of acute gastrointestinal bleeding in real time and characterize patients by risk using available data in the electronic health record. A decision rule-based electronic health record phenotype has equivalent performance as measured by positive predictive value compared to deep learning and natural language processing-based models, and after live implementation appears to have increased the use of the Acute Gastrointestinal Bleeding Clinical Care pathway. Patients with acute gastrointestinal bleeding but with other groups of disease concepts can be differentiated by directly mapping unstructured clinical text to a common ontology and treating the vector of concepts as signals on a knowledge graph; these patients can be differentiated using unbalanced diffusion earth mover’s distances on the graph. For electronic health record data with data missing not at random, MURAL, an unsupervised random forest-based method, handles data with missing values and generates visualizations that characterize patients with gastrointestinal bleeding. This thesis forms a basis for understanding the potential for machine learning and deep learning tools to characterize risk for patients with acute gastrointestinal bleeding. In the future, these tools may be critical in implementing integrated risk assessment to keep low risk patients out of the hospital and guide resuscitation and timely endoscopic procedures for patients at higher risk for clinical decompensation

    The use of knowledge discovery databases in the identification of patients with colorectal cancer

    Get PDF
    Colorectal cancer is one of the most common forms of malignancy with 35,000 new patients diagnosed annually within the UK. Survival figures show that outcomes are less favourable within the UK when compared with the USA and Europe with 1 in 4 patients having incurable disease at presentation as of data from 2000.Epidemiologists have demonstrated that the incidence of colorectal cancer is highest on the industrialised western world with numerous contributory factors. These range from a genetic component to concurrent medical conditions and personal lifestyle. In addition, data also demonstrates that environmental changes play a significant role with immigrants rapidly reaching the incidence rates of the host country.Detection of colorectal cancer remains an important and evolving aspect of healthcare with the aim of improving outcomes by earlier diagnosis. This process was initially revolutionised within the UK in 2002 with the ACPGBI 2 week wait guidelines to facilitate referrals form primary care and has subsequently seen other schemes such as bowel cancer screening introduced to augment earlier detection rates. Whereas the national screening programme is dependent on FOBT the standard referral practice is dependent upon a number of trigger symptoms that qualify for an urgent referral to a specialist for further investigations. This process only identifies 25-30% of those with colorectal cancer and remains a labour intensive process with only 10% of those seen in the 2 week wait clinics having colorectal cancer.This thesis hypothesises whether using a patient symptom questionnaire in conjunction with knowledge discovery techniques such as data mining and artificial neural networks could identify patients at risk of colorectal cancer and therefore warrant urgent further assessment. Artificial neural networks and data mining methods are used widely in industry to detect consumer patterns by an inbuilt ability to learn from previous examples within a dataset and model often complex, non-linear patterns. Within medicine these methods have been utilised in a host of diagnostic techniques from myocardial infarcts to its use in the Papnet cervical smear programme for cervical cancer detection.A linkert based questionnaire of those attending the 2 week wait fast track colorectal clinic was used to produce a ‘symptoms’ database. This was then correlated with individual patient diagnoses upon completion of their clinical assessment. A total of 777 patients were included in the study and their diagnosis categorised into a dichotomous variable to create a selection of datasets for analysis. These data sets were then taken by the author and used to create a total of four primary databases based on all questions, 2 week wait trigger symptoms, Best knowledge questions and symptoms identified in Univariate analysis as significant. Each of these databases were entered into an artificial neural network programme, altering the number of hidden units and layers to obtain a selection of outcome models that could be further tested based on a selection of set dichotomous outcomes. Outcome models were compared for sensitivity, specificity and risk. Further experiments were carried out with data mining techniques and the WEKA package to identify the most accurate model. Both would then be compared with the accuracy of a colorectal specialist and GP.Analysis of the data identified that 24% of those referred on the 2 week wait referral pathway failed to meet referral criteria as set out by the ACPGBI. The incidence of those with colorectal cancer was 9.5% (74) which is in keeping with other studies and the main symptoms were rectal bleeding, change in bowel habit and abdominal pain. The optimal knowledge discovery database model was a back propagation ANN using all variables for outcomes cancer/not cancer with sensitivity of 0.9, specificity of 0.97 and LR 35.8. Artificial neural networks remained the more accurate modelling method for all the dichotomous outcomes.The comparison of GP’s and colorectal specialists at predicting outcome demonstrated that the colorectal specialists were the more accurate predictors of cancer/not cancer with sensitivity 0.27 and specificity 0.97, (95% CI 0.6-0.97, PPV 0.75, NPV 0.83) and LR 10.6. When compared to the KDD models for predicting the same outcome, once again the ANN models were more accurate with the optimal model having sensitivity 0.63, specificity 0.98 (95% CI 0.58-1, PPV 0.71, NPV 0.96) and LR 28.7.The results demonstrate that diagnosis colorectal cancer remains a challenging process, both for clinicians and also for computation models. KDD models have been shown to be consistently more accurate in the prediction of those with colorectal cancer than clinicians alone when used solely in conjunction with a questionnaire. It would be ill conceived to suggest that KDD models could be used as a replacement to clinician- patient interaction but they may aid in the acceleration of some patients for further investigations or ‘straight to test’ if used on those referred as routine patients

    Facilitating and Enhancing Biomedical Knowledge Translation: An in Silico Approach to Patient-centered Pharmacogenomic Outcomes Research

    Get PDF
    Current research paradigms such as traditional randomized control trials mostly rely on relatively narrow efficacy data which results in high internal validity and low external validity. Given this fact and the need to address many complex real-world healthcare questions in short periods of time, alternative research designs and approaches should be considered in translational research. In silico modeling studies, along with longitudinal observational studies, are considered as appropriate feasible means to address the slow pace of translational research. Taking into consideration this fact, there is a need for an approach that tests newly discovered genetic tests, via an in silico enhanced translational research model (iS-TR) to conduct patient-centered outcomes research and comparative effectiveness research studies (PCOR CER). In this dissertation, it was hypothesized that retrospective EMR analysis and subsequent mathematical modeling and simulation prediction could facilitate and accelerate the process of generating and translating pharmacogenomic knowledge on comparative effectiveness of anticoagulation treatment plan(s) tailored to well defined target populations which eventually results in a decrease in overall adverse risk and improve individual and population outcomes. To test this hypothesis, a simulation modeling framework (iS-TR) was proposed which takes advantage of the value of longitudinal electronic medical records (EMRs) to provide an effective approach to translate pharmacogenomic anticoagulation knowledge and conduct PCOR CER studies. The accuracy of the model was demonstrated by reproducing the outcomes of two major randomized clinical trials for individualizing warfarin dosing. A substantial, hospital healthcare use case that demonstrates the value of iS-TR when addressing real world anticoagulation PCOR CER challenges was also presented

    PREDICTING NECROTIZING ENTEROCOLITIS IN HOSPITALIZED NEONATES

    Get PDF
    Necrotizing enterocolitis (NEC), a devastating disease of premature bowel, is challenging to predict. The disease is rare, with incompletely understood pathogenesis, rapid onset and progression, and insufficient diagnostic criteria. Using a systematic review of the literature, a cultivated dataset of published neonatal radiographs, and a publicly available neonatal critical care database, this dissertation examines novel approaches to improve predictions of NEC. First, in a review piece, we summarize surgical care for patients with NEC (Chapter 2). We provide a foundational framework to understanding NEC by describing the diverse presentations of the disease and discussing current best practices to reduce NEC-associated morbidity and mortality. Second, we conduct a systematic review of published prognostic models for predicting NEC onset and progression in hospitalized infants (Chapter 3). We find that published models have fair to poor discrimination of NEC outcomes and high risk of bias, limiting model clinical utility. Third, we develop an image classifier to support surgical resident recognition of pneumatosis intestinalis, a radiographic sign of NEC (Chapter 4). We find that a deep convolutional neural network trained on neonatal abdominal radiographs can successfully detect pneumatosis and performs comparably well to senior surgical residents. Fourth, we use the MIMIC III Clinical Database to develop an early warning score for NEC based on routinely available clinical data during an infant's stay in a neonatal intensive care unit (NICU) (Chapter 5). We find that models accurately predict NEC before disease onset, with first NEC risk detection occurring days previously. Fifth, in a perspective piece, we reflect on the promises and challenges of utilizing machine learning methods in NEC prediction and research (Chapter 6). We advocate for policy and practice changes to improve NEC prediction efforts. Overall, this dissertation highlights strengths and limitations of existing NEC prediction models and offers novel solutions to improve predictions of NEC in hospitalized neonates. We hope this dissertation helps researchers in pediatric surgery and neonatology identify steps to improve early detection of NEC, promote timely clinical management, and minimize the high morbidity and mortality of this disease

    New Techniques in Gastrointestinal Endoscopy

    Get PDF
    As result of progress, endoscopy has became more complex, using more sophisticated devices and has claimed a special form. In this moment, the gastroenterologist performing endoscopy has to be an expert in macroscopic view of the lesions in the gut, with good skills for using standard endoscopes, with good experience in ultrasound (for performing endoscopic ultrasound), with pathology experience for confocal examination. It is compulsory to get experience and to have patience and attention for the follow-up of thousands of images transmitted during capsule endoscopy or to have knowledge in physics necessary for autofluorescence imaging endoscopy. Therefore, the idea of an endoscopist has changed. Examinations mentioned need a special formation, a superior level of instruction, accessible to those who have already gained enough experience in basic diagnostic endoscopy. This is the reason for what these new issues of endoscopy are presented in this book of New techniques in Gastrointestinal Endoscopy

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not
    • 

    corecore