4 research outputs found

    Preimage Attacks on the Round-reduced Keccak with Cross-linear Structures

    Get PDF
    In this paper, based on the work pioneered by Aumasson and Meier, Dinur et al., and Guo et al., we construct some new delicate structures from the roundreduced versions of Keccakhash function family. The new constructed structures are called cross-linear structures, because linear polynomials appear across in different equations of these structures. And we apply cross-linear structures to do preimage attacks on some instances of the round-reduced Keccak. There are three main contributions in this paper. First, we construct a kind of cross-linear structures by setting the statuses carefully. With these cross-linear structures, guessing the value of one linear polynomial could lead to three linear equations (including the guessed one). Second, for some special cases, e.g. the 3-round Keccakchallenge instance Keccak[r=240, c=160, nr=3], a more special kind of cross-linear structures is constructed, and these structures can be used to obtain seven linear equations (including the guessed) if the values of two linear polynomials are guessed. Third, as applications of the cross-linear structures, we practically found a preimage for the 3-round KeccakChallenge instance Keccak[r=240, c=160, nr=3]. Besides, by constructing similar cross-linear structures, the complexity of the preimage attack on 3-round Keccak-256/SHA3-256/SHAKE256 can be lowered to 2150/2151/2153 operations, while the previous best known result on Keccak-256 is 2192

    Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods

    Get PDF
    Troika is a recently proposed sponge-based hash function for IOTA\u27s ternary architecture and platform, which is developed by CYBERCRYPT. In this paper, we introduce the preimage attack on 2 and 3 rounds of Troika with a divide-and-conquer approach. Instead of directly matching a given hash value, we propose equivalent conditions to determine whether a message is the preimage before computing the complete hash value. As a result, for the two-round hash value that can be generated with one block, we can search the preimage only in a valid space and efficiently enumerate the messages which can satisfy most of the equivalent conditions with a guess-and-determine technique. For the three-round preimage attack, an MILP-based method is applied to separate the one-block message space into two parts in order to obtain the best advantage over brute force. Our experiments show that the time complexity of the preimage attack on 2 (out of 24) rounds of Troika can be improved to 3793^{79}, which is 31643^{164} times faster than the brute force. For the preimage attack on 3 (out of 24) rounds of Troika, we can obtain an advantage of 325.73^{25.7} over brute force. In addition, how to construct the second preimage for two-round Troika in seconds is presented as well. Our attacks do not threaten the security of Troika

    Allocating Rotational Cryptanalysis based Preimage Attack on 4-round Keccak-224 for Quantum Setting

    Get PDF
    In this paper, we aim to present a quantum setting oriented preimage attack against 4-round Keccak-224. An important technique we called the allocating rotational cryptanalysis takes the preimage attack into the situation of 2-block preimage recovery. With the conditions on the middle state proposed by Li et al., we use the generic quantum preimage attack to deal with the finding of first preimage block. By using the newly explored propagation of rotational relations, we significantly increase the number of eigenpoints at the end of 4-round modified Keccak-f from 0 to 32, and therefore improving the accuracy of determining the rotational number for a certain rotational counterpart in the quantum setting by more than 10 orders of magnitude. On the basis of the above, we design an efficient unitary oracle operator with only twice calling of the 4-round modified Keccak-f, which costs half of previous results, to mark a rotational counterpart of the second preimage block in order that the second preimage block can be found indirectly from a quickly generated specified search space. As a result on the 4-round Keccak-224: In the classical setting, the preimage attack with the complexity decreased to 2^218 is better than the result based on the pioneered rotational cryptanalysis. In the quantum setting, the amplitude amplification driven preimage attack with a complexity of 2^110 is by far the best dedicated quantum preimage attack. Additionally, the SKW algorithm is applied to the dedicated quantum preimage attack against the 4-round Keccak-224 for the first time, which is exponentially easier to implement in quantum circuit than the former, with a complexity of 2^111

    Preimage Attacks on the Round-reduced Keccak with Cross-linear Structures

    No full text
    In this paper, based on the work pioneered by Aumasson and Meier, Dinur et al., and Guo et al., we construct some new delicate structures from the roundreduced versions of Keccakhash function family. The new constructed structures are called cross-linear structures, because linear polynomials appear across in different equations of these structures. And we apply cross-linear structures to do preimage attacks on some instances of the round-reduced Keccak. There are three main contributions in this paper. First, we construct a kind of cross-linear structures by setting the statuses carefully. With these cross-linear structures, guessing the value of one linear polynomial could lead to three linear equations (including the guessed one). Second, for some special cases, e.g. the 3-round Keccakchallenge instance Keccak[r=240, c=160, nr=3], a more special kind of cross-linear structures is constructed, and these structures can be used to obtain seven linear equations (including the guessed) if the values of two linear polynomials are guessed. Third, as applications of the cross-linear structures, we practically found a preimage for the 3-round KeccakChallenge instance Keccak[r=240, c=160, nr=3]. Besides, by constructing similar cross-linear structures, the complexity of the preimage attack on 3-round Keccak-256/SHA3-256/SHAKE256 can be lowered to 2150/2151/2153 operations, while the previous best known result on Keccak-256 is 2192
    corecore