8 research outputs found

    Rational coordination of crowdsourced resources for geo-temporal request satisfaction

    Full text link
    Existing mobile devices roaming around the mobility field should be considered as useful resources in geo-temporal request satisfaction. We refer to the capability of an application to access a physical device at particular geographical locations and times as GeoPresence, and we pre- sume that mobile agents participating in GeoPresence-capable applica- tions should be rational, competitive, and willing to deviate from their routes if given the right incentive. In this paper, we define the Hitch- hiking problem, which is that of finding the optimal assignment of re- quests with specific spatio-temporal characteristics to competitive mobile agents subject to spatio-temporal constraints. We design a mechanism that takes into consideration the rationality of the agents for request sat- isfaction, with an objective to maximize the total profit of the system. We analytically prove the mechanism to be convergent with a profit com- parable to that of a 1/2-approximation greedy algorithm, and evaluate its consideration of rationality experimentally.Supported in part by NSF Grants; #1430145, #1414119, #1347522, #1239021, and #1012798

    Mechanism design for spatio-temporal request satisfaction in mobile networks

    Full text link
    Mobile agents participating in geo-presence-capable crowdsourcing applications should be presumed rational, competitive, and willing to deviate from their routes if given the right incentive. In this paper, we design a mechanism that takes into consideration this rationality for request satisfaction in such applications. We propose the Geo-temporal Request Satisfaction (GRS) problem to be that of finding the optimal assignment of requests with specific spatio-temporal characteristics to competitive mobile agents subject to spatio-temporal constraints. The objective of the GRS problem is to maximize the total profit of the system subject to our rationality assumptions. We define the problem formally, prove that it is NP-Complete, and present a practical solution mechanism, which we prove to be convergent, and which we evaluate experimentally.National Science Foundation (1012798, 0952145, 0820138, 0720604, 0735974

    Incentive compatible route coordination of crowdsourced resources and its application to GeoPresence-as-a-Service

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen- ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent's exibility is exploited to maximize the coverage of a mo- bility field, with an objective to maximize the revenue collected from sat- isfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1 2 -approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent's truthfulness about its exibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    Incentive-compatible route coordination of crowdsourced resources

    Full text link
    Technical ReportWith the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen-ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1-approximation algorithm to solve the 2 problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    The filter-placement problem and its application to content de-duplication

    Full text link
    In many information networks, data items such as updates in social networks, news flowing through interconnected RSS feeds and blogs, measurements in sensor networks, route updates in ad-hoc networks, etc. propagate in an uncoordinated manner: nodes often relay information they receive to neighbors, independent of whether or not these neighbors received such information from other sources. This uncoordinated data dissemination may result in significant, yet unnecessary communication and processing overheads, ultimately reducing the utility of information networks. To alleviate the negative impacts of this information multiplicity phenomenon, we propose that a subset of nodes (selected at key positions in the network) carry out additional information de-duplication functionality namely, the removal (or significant reduction) of the duplicative data items relayed through them. We refer to such nodes as filters. We formally define the Filter Placement problem as a combinatorial optimization problem, and study its computational complexity for different types of graphs. We also present polynomial-time approximation algorithms for the problem. Our experimental results, which we obtained through extensive simulations on synthetic and real-world information flow networks, suggest that in many settings a relatively small number of filters is fairly effective in removing a large fraction of duplicative information.National Science Foundation (0720604, 0735974, 0820138, 0952145, 1012798, 1017529

    Preferential Field Coverage Through Detour-Based Mobility Coordination

    No full text
    Abstract—Controlling the mobility pattern of mobile nodes (e.g., robots) to monitor a given field is a well-studied problem in sensor networks. In this setup, absolute control over the nodes’ mobility is assumed. Apart from the physical ones, no other constraints are imposed on planning mobility of these nodes. In this paper, we address a more general version of the problem. Specifically, we consider a setting in which mobility of each node is externally constrained by a schedule consisting of a list of locations that the node must visit at particular times. Typically, such schedules exhibit some level of slack, which could be leveraged to achieve a specific coverage distribution of a field. Such a distribution defines the relative importance of different field locations. We define the Constrained Mobility Coordination problem for Preferential Coverage (CMC-PC) as follows: given a field with a desired monitoring distribution, and a number of nodes n, each with its own schedule, we need to coordinate the mobility of the nodes in order to achieve the following two goals: 1) satisfy the schedules of all nodes, and 2) attain the required coverage of the given field. We show that the CMC-PC problem is NP-complete (by reduction to the Hamiltonian Cycle problem). Then we propose TFM, a distributed heuristic to achieve field coverage that is as close as possible to the required coverage distribution. We verify the premise of TFM using extensive simulations, as well as taxi logs from a major metropolitan area. We compare TFM to the random mobility strategy —the latter provides a lower bound on performance. Our results show that TFM is very successful in matching the required field coverage distribution, and that it provides, at least, two-fold query success ratio for queries that follow the target coverage distribution of the field. I

    Centrality measures and analyzing dot-product graphs

    Full text link
    In this thesis we investigate two topics in data mining on graphs; in the first part we investigate the notion of centrality in graphs, in the second part we look at reconstructing graphs from aggregate information. In many graph related problems the goal is to rank nodes based on an importance score. This score is in general referred to as node centrality. In Part I. we start by giving a novel and more efficient algorithm for computing betweenness centrality. In many applications not an individual node but rather a set of nodes is chosen to perform some task. We generalize the notion of centrality to groups of nodes. While group centrality was first formally defined by Everett and Borgatti (1999), we are the first to pose it as a combinatorial optimization problem; find a group of k nodes with largest centrality. We give an algorithm for solving this optimization problem for a general notion of centrality that subsumes various instantiations of centrality that find paths in the graph. We prove that this problem is NP-hard for specific centrality definitions and we provide a universal algorithm for this problem that can be modified to optimize the specific measures. We also investigate the problem of increasing node centrality by adding or deleting edges in the graph. We conclude this part by solving the optimization problem for two specific applications; one for minimizing redundancy in information propagation networks and one for optimizing the expected number of interceptions of a group in a random navigational network. In the second part of the thesis we investigate what we can infer about a bipartite graph if only some aggregate information -- the number of common neighbors among each pair of nodes -- is given. First, we observe that the given data is equivalent to the dot-product of the adjacency vectors of each node. Based on this knowledge we develop an algorithm that is based on SVD-decomposition, that is capable of almost perfectly reconstructing graphs from such neighborhood data. We investigate two versions of this problem, in the versions the dot-product of nodes with themselves, e.g. the node degrees, are either known or hidden
    corecore