73,708 research outputs found

    Preferences estimation without approximation

    Get PDF
    We devise an estimation methodology which allows preferences estimation and comparative statics analysis without a reliance on Taylor’s approximations and the indirect utility function

    Preferences estimation without approximation

    Get PDF
    We devise an estimation methodology which allows preferences estimation and comparative statics analysis without a reliance on Taylor’s approximations and the indirect utility function

    Information Disclosure in Open Non-Binding Procurement Auctions: an Empirical Study

    Get PDF
    The outcome of non-binding reverse auctions critically depends on how information is distributed during the bidding process. We use data from a large European procurement platform to study the impact of different information structures, specifically the availability of quality information to the bidders, on buyers' welfare and turnover of the platform. First we show that on the procurement platform considered bidders indeed are aware of their rivals' characteristics and the buyers preferences over those non-price characteristics. In a counterfactual analysis we then analyze the reduction of non-price information available to the bidders. As we find, platform turnovers in the period considered would decrease by around 30%, and the buyers' welfare would increase by the monetary equivalent of around 45% of turnover of the platform

    Pairwise comparison matrices and the error-free property of the decision maker

    Get PDF
    Pairwise comparison is a popular assessment method either for deriving criteria-weights or for evaluating alternatives according to a given criterion. In real-world applications consistency of the comparisons rarely happens: intransitivity can occur. The aim of the paper is to discuss the relationship between the consistency of the decision maker—described with the error-free property—and the consistency of the pairwise comparison matrix (PCM). The concept of error-free matrix is used to demonstrate that consistency of the PCM is not a sufficient condition of the error-free property of the decision maker. Informed and uninformed decision makers are defined. In the first stage of an assessment method a consistent or near-consistent matrix should be achieved: detecting, measuring and improving consistency are part of any procedure with both types of decision makers. In the second stage additional information are needed to reveal the decision maker’s real preferences. Interactive questioning procedures are recommended to reach that goal

    Clustering and Inference From Pairwise Comparisons

    Full text link
    Given a set of pairwise comparisons, the classical ranking problem computes a single ranking that best represents the preferences of all users. In this paper, we study the problem of inferring individual preferences, arising in the context of making personalized recommendations. In particular, we assume that there are nn users of rr types; users of the same type provide similar pairwise comparisons for mm items according to the Bradley-Terry model. We propose an efficient algorithm that accurately estimates the individual preferences for almost all users, if there are rmax{m,n}logmlog2nr \max \{m, n\}\log m \log^2 n pairwise comparisons per type, which is near optimal in sample complexity when rr only grows logarithmically with mm or nn. Our algorithm has three steps: first, for each user, compute the \emph{net-win} vector which is a projection of its (m2)\binom{m}{2}-dimensional vector of pairwise comparisons onto an mm-dimensional linear subspace; second, cluster the users based on the net-win vectors; third, estimate a single preference for each cluster separately. The net-win vectors are much less noisy than the high dimensional vectors of pairwise comparisons and clustering is more accurate after the projection as confirmed by numerical experiments. Moreover, we show that, when a cluster is only approximately correct, the maximum likelihood estimation for the Bradley-Terry model is still close to the true preference.Comment: Corrected typos in the abstrac

    Multitask Learning Deep Neural Networks to Combine Revealed and Stated Preference Data

    Full text link
    It is an enduring question how to combine revealed preference (RP) and stated preference (SP) data to analyze travel behavior. This study presents a framework of multitask learning deep neural networks (MTLDNNs) for this question, and demonstrates that MTLDNNs are more generic than the traditional nested logit (NL) method, due to its capacity of automatic feature learning and soft constraints. About 1,500 MTLDNN models are designed and applied to the survey data that was collected in Singapore and focused on the RP of four current travel modes and the SP with autonomous vehicles (AV) as the one new travel mode in addition to those in RP. We found that MTLDNNs consistently outperform six benchmark models and particularly the classical NL models by about 5% prediction accuracy in both RP and SP datasets. This performance improvement can be mainly attributed to the soft constraints specific to MTLDNNs, including its innovative architectural design and regularization methods, but not much to the generic capacity of automatic feature learning endowed by a standard feedforward DNN architecture. Besides prediction, MTLDNNs are also interpretable. The empirical results show that AV is mainly the substitute of driving and AV alternative-specific variables are more important than the socio-economic variables in determining AV adoption. Overall, this study introduces a new MTLDNN framework to combine RP and SP, and demonstrates its theoretical flexibility and empirical power for prediction and interpretation. Future studies can design new MTLDNN architectures to reflect the speciality of RP and SP and extend this work to other behavioral analysis

    Estimating Euler equations

    Get PDF
    In this paper we consider conditions under which the estimation of a log-linearized Euler equation for consumption yields consistent estimates of preference parameters. When utility is isoelastic and a sample covering a long time period is available, consistent estimates are obtained from the loglinearized Euler equation when the innovations to the conditional variance of consumption growth are uncorrelated with the instruments typically used in estimation. We perform a Montecarlo experiment, consisting in solving and simulating a simple life cycle model under uncertainty, and show that in most situations, the estimates obtained from the log-linearized equation are not systematically biased. This is true even when we introduce heteroscedasticity in the process generating income. The only exception is when discount rates are very high (e.g. 47% per year). This problem arises because consumers are nearly always close to the maximum borrowing limit: the estimation bias is unrelated to the linearization and estimates using nonlinear GMM are as bad. Across all our situations, estimation using a log-linearized Euler equation does better than nonlinear GMM despite the absence of measurement error. Finally, we plot life cycle profiles for the variance of consumption growth, which, except when the discount factor is very high, is remarkably flat. This implies that claims that demographic variables in log-linearized Euler equations capture changes in the variance of consumption growth are unwarranted
    corecore