103 research outputs found

    Integration of Absolute Orientation Measurements in the KinectFusion Reconstruction pipeline

    Full text link
    In this paper, we show how absolute orientation measurements provided by low-cost but high-fidelity IMU sensors can be integrated into the KinectFusion pipeline. We show that integration improves both runtime, robustness and quality of the 3D reconstruction. In particular, we use this orientation data to seed and regularize the ICP registration technique. We also present a technique to filter the pairs of 3D matched points based on the distribution of their distances. This filter is implemented efficiently on the GPU. Estimating the distribution of the distances helps control the number of iterations necessary for the convergence of the ICP algorithm. Finally, we show experimental results that highlight improvements in robustness, a speed-up of almost 12%, and a gain in tracking quality of 53% for the ATE metric on the Freiburg benchmark.Comment: CVPR Workshop on Visual Odometry and Computer Vision Applications Based on Location Clues 201

    noRANSAC for fundamental matrix estimation

    Get PDF
    The estimation of the fundamental matrix from a set of corresponding points is a relevant topic in epipolar stereo geometry [10]. Due to the high amount of outliers between the matches, RANSAC-based approaches [7, 13, 29] have been used to obtain the fundamental matrix. In this paper two new contributes are presented: a new normalized epipolar error measure which takes into account the shape of the features used as matches [17] and a new strategy to compare fundamental matrices. The proposed error measure gives good results and it does not depend on the image scale. Moreover, the new evaluation strategy describes a valid tool to compare different RANSAC-based methods because it does not rely on the inlier ratio, which could not correspond to the best allowable fundamental matrix estimated model, but it makes use of a reference ground truth fundamental matrix obtained by a set of corresponding points given by the use

    Purposive sample consensus: A paradigm for model fitting with application to visual odometry

    Full text link
    © Springer International Publishing Switzerland 2015. ANSAC (random sample consensus) is a robust algorithm for model fitting and outliers' removal, however, it is neither efficient nor reliable enough to meet the requirement of many applications where time and precision is critical. Various algorithms have been developed to improve its performance for model fitting. A new algorithm named PURSAC (purposive sample consensus) is introduced in this paper, which has three major steps to address the limitations of RANSAC and its variants. Firstly, instead of assuming all the samples have a same probability to be inliers, PURSAC seeks their differences and purposively selects sample sets. Secondly, as sampling noise always exists; the selection is also according to the sensitivity analysis of a model against the noise. The final step is to apply a local optimization for further improving its model fitting performance. Tests show that PURSAC can achieve very high model fitting certainty with a small number of iterations. Two cases are investigated for PURSAC implementation. It is applied to line fitting to explain its principles, and then to feature based visual odometry, which requires efficient, robust and precise model fitting. Experimental results demonstrate that PURSAC improves the accuracy and efficiency of fundamental matrix estimation dramatically, resulting in a precise and fast visual odometry
    • …
    corecore