19 research outputs found

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° обСспСчСния ΠΊΠΎΠΌΡ„ΠΎΡ€Ρ‚Π½ΠΎΠ³ΠΎ состояния ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚Π° ΡƒΠΌΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ° с использованиСм ансамбля Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΡ… искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй

    Get PDF
    Анализ примСнСния Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡƒΠΌΠ½Ρ‹ΠΉ Π΄ΠΎΠΌ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° нСдостаточный ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ управляСмости Π΅Π³ΠΎ инфраструктурой, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ ΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΡŽ энСргСтичСских ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… рСсурсов. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° управлСния Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ инфраструктурой ΠΆΠΈΠ»ΠΎΠ³ΠΎ пространства Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, связана с большим числом узкоспСциализированных Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ домашнСй Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΡΠ»ΠΎΠΆΠ½ΡΡŽΡ‚ процСсс управлСния. Π£ΠΌΠ½Ρ‹ΠΉ Π΄ΠΎΠΌ рассматриваСтся ΠΊΠ°ΠΊ мноТСство нСзависимых кибСрфизичСских устройств Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π½Π° достиТСниС своСй Ρ†Π΅Π»ΠΈ. Для согласованной Ρ€Π°Π±ΠΎΡ‚Ρ‹ кибСрфизичСских устройств прСдлагаСтся ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΡΠΎΠ²ΠΌΠ΅ΡΡ‚Π½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ Ρ‡Π΅Ρ€Π΅Π· Π΅Π΄ΠΈΠ½Ρ‹ΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ†Π΅Π½Ρ‚Ρ€. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ устройств Π² Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ срСдС сохраняСт рСсурс физичСских устройств, производя Π²ΠΈΡ€Ρ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΉ расчСт для всСвозмоТных Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² взаимодСйствия устройств ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ физичСской срСдой. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° управлСния ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚ΠΎΠΌ ΡƒΠΌΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ансамбля Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΡ… искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй, Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ совмСстного использования ΠΊΠΎΠ½Π΄ΠΈΡ†ΠΈΠΎΠ½Π΅Ρ€Π°, вСнтиляции ΠΈ отоплСния. Алгоритм Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти позволяСт ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ состояния физичСской срСды, ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ кибСрфизичСских устройств ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ сигналы управлСния для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ…, обСспСчивая ΡΠΎΠ²ΠΌΠ΅ΡΡ‚Π½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ устройств с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ рСсурсопотрСблСниСм ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ Ρ‚Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ практичСской Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ систСмы управлСния ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚ΠΎΠΌ ΡƒΠΌΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΡ‡Π΅Π±Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ класса. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Π΅ Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Π΅ сСти систСм кондиционирования, вСнтиляции ΠΈ отоплСния. ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΎ тСстированиС Ρ€Π°Π±ΠΎΡ‚Ρ‹ систСмы управлСния ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π°ΡƒΠ΄ΠΈΡ‚ΠΎΡ€ΠΈΠΈ унивСрситСта с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй, Π² качСствС устройства управлСния использован ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΉ логичСский ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€ отСчСствСнного производства. ЦСлью управлСния Π½Π° основС Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… кибСрфизичСских устройств являСтся достиТСния ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ мощности ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΡ€ΠΈ ΠΈΡ… совмСстной Ρ€Π°Π±ΠΎΡ‚Π΅

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° обСспСчСния ΠΊΠΎΠΌΡ„ΠΎΡ€Ρ‚Π½ΠΎΠ³ΠΎ состояния ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚Π° ΡƒΠΌΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ° с использованиСм ансамбля Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΡ… искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй

    Get PDF
    Analysis of the application of smart home technology indicates an insufficient level of controllability of its infrastructure, which leads to excessive consumption of energy and information resources. The problem of managing the digital infrastructure of human living space, is associated with a large number of highly specialized solutions for home automation, which complicate the management process. Smart home is considered as a set of independent cyber-physical devices aimed at achieving its goal. For coordinated work of cyber-physical devices it is proposed to provide their joint work through a single information center. Simulation of device operation modes in a digital environment preserves the resource of physical devices by making a virtual calculation for all possible variants of interaction of devices between themselves and the physical environment. A methodology for controlling the microclimate of a smart home using an ensemble of fuzzy artificial neural networks is developed, with the example of joint use of air conditioning, ventilation and heating. The neural network algorithm allows you to monitor the parameters of the physical environment, predict the modes of cyber-physical devices and generate control signals for each of them, ensuring the joint operation of devices with minimal resource consumption and information traffic. A variant of practical implementation of a smart home climate control system on the example of a multifunctional educational computer class is proposed. Hybrid neural networks of air conditioning, ventilation and heating systems were developed. The testing of the microclimate control system of a multifunctional university classroom using hybrid neural networks was carried out, a programmable logic controller of domestic production was used as a control device. The goal of management based on cooperating cyber-physical devices is to achieve a minimum of power and information traffic when they work together.Анализ примСнСния Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡƒΠΌΠ½Ρ‹ΠΉ Π΄ΠΎΠΌ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° нСдостаточный ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ управляСмости Π΅Π³ΠΎ инфраструктурой, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ ΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΡŽ энСргСтичСских ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… рСсурсов. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° управлСния Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ инфраструктурой ΠΆΠΈΠ»ΠΎΠ³ΠΎ пространства Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, связана с большим числом узкоспСциализированных Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ домашнСй Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΡΠ»ΠΎΠΆΠ½ΡΡŽΡ‚ процСсс управлСния. Π£ΠΌΠ½Ρ‹ΠΉ Π΄ΠΎΠΌ рассматриваСтся ΠΊΠ°ΠΊ мноТСство нСзависимых кибСрфизичСских устройств Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π½Π° достиТСниС своСй Ρ†Π΅Π»ΠΈ. Для согласованной Ρ€Π°Π±ΠΎΡ‚Ρ‹ кибСрфизичСских устройств прСдлагаСтся ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΡΠΎΠ²ΠΌΠ΅ΡΡ‚Π½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ Ρ‡Π΅Ρ€Π΅Π· Π΅Π΄ΠΈΠ½Ρ‹ΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ†Π΅Π½Ρ‚Ρ€. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ устройств Π² Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ срСдС сохраняСт рСсурс физичСских устройств, производя Π²ΠΈΡ€Ρ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΉ расчСт для всСвозмоТных Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² взаимодСйствия устройств ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ физичСской срСдой. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° управлСния ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚ΠΎΠΌ ΡƒΠΌΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ансамбля Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΡ… искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй, Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ совмСстного использования ΠΊΠΎΠ½Π΄ΠΈΡ†ΠΈΠΎΠ½Π΅Ρ€Π°, вСнтиляции ΠΈ отоплСния. Алгоритм Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти позволяСт ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ состояния физичСской срСды, ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ кибСрфизичСских устройств ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ сигналы управлСния для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ…, обСспСчивая ΡΠΎΠ²ΠΌΠ΅ΡΡ‚Π½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ устройств с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ рСсурсопотрСблСниСм ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ Ρ‚Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ практичСской Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ систСмы управлСния ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚ΠΎΠΌ ΡƒΠΌΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΡ‡Π΅Π±Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ класса. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Π΅ Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Π΅ сСти систСм кондиционирования, вСнтиляции ΠΈ отоплСния. ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΎ тСстированиС Ρ€Π°Π±ΠΎΡ‚Ρ‹ систСмы управлСния ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΈΠΌΠ°Ρ‚ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π°ΡƒΠ΄ΠΈΡ‚ΠΎΡ€ΠΈΠΈ унивСрситСта с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй, Π² качСствС устройства управлСния использован ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΉ логичСский ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€ отСчСствСнного производства. ЦСлью управлСния Π½Π° основС Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… кибСрфизичСских устройств являСтся достиТСния ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ мощности ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΡ€ΠΈ ΠΈΡ… совмСстной Ρ€Π°Π±ΠΎΡ‚Π΅

    Analysis of energy management for heating, ventilating and air-conditioning systems

    Get PDF
    AbstractIn the office buildings, large energy is consumed due to poor thermal performance and low efficiencies of HVAC systems. A cooling load calculation is a basis for the design of building cooling systems. The current design methods are usually based on deterministic cooling loads, which are obtained by using design parameters. However, these parameters contain uncertainties, and they will be different from that used in the design calculation when the cooling system is put in use. The actual cooling load profile will deviate from that predicted in design. A modified bin method was used in this paper to optimize the energy efficiency ratio (EER). A design optimization method is proposed by considering uncertainties related to the cooling load calculation. Impacts caused by the uncertainties of seven factors are considered, including the outdoor weather conditions and internal heat sources. The cooling load distribution is analyzed. Comparison between the modified bin method and CLTD/SCL/CLF method is also conducted. With the distributions of their energy consumption, decision makers can select the optimal configuration based on quantified confidence. According to the economic benefits and energy efficiency ratio, using modified bin method will increase the overall energy efficiency ratio by 45.57%

    Design of an Online Optimisation Tool for Smart Home Heating Control

    Get PDF
    The performance of model predictive smart home heating control (SHHC) heavily depends on the accuracy of the initial setup for individual building characteristics. Since owners or renters of residential buildings are predominantly not experts, users’ acceptance of SHHC requires ease of use in the setup and minimal user intervention (e.g. only declaration of preferences), but at the same time high reliability of the initial parameter settings and flexibility to handle different preferences. In contrast, the training time of self-learning SHHC (e.g. based on artificial neural networks) to reach a reliable control status could conflict with the users’ request for comfortable heating from the very beginning. Dealing with this trade-off, this paper follows the tradition of design science research and presents a prototype of an online optimisation tool (OOT) for SHHC. The OOT is multi objective (e.g. minimising lifecycle energy (cost) or carbon emissions) under constraints such as thermal comfort. While the OOT is based on a discrete dynamic model, its self-adaptation is accelerated by a database of physically simulated characteristic buildings, which allows parameter setting at the beginning by a similarity measurement. The OOT artefact provides a base for empirically testing advantages of different SHHC design alternatives

    Smart Review of the Application of Genetic Algorithm in Construction and Housing

    Get PDF
    Genetic algorithm (GA) is an example of evolutionary algorithms that are bio-inspired computational methods. GA has been applied to numerous fields. It has been applied in different aspects of construction and building but that is scarcely any review that documents it. The paper reviewed the application of GA in construction and building. It was revealed that energy management is the major area of application which are further subdivided into load scheduling, prediction, and optimization. Other nonenergy applications are pricing, environment, and construction design or real estate. The review presents research information to researchers. The information can assist in the optimization of construction processes which can reduce the construction time and costs, ensure optimal allocation and use of energy, prediction of energy demands and supply in houses and incorporation of sustainability in construction and management of real estate

    Transfer Learning to study an HVAC of a logistic warehouse through a thermal digital twin

    Get PDF
    El funcionament dels sistemes de calefacciΓ³, ventilaciΓ³ i aire condicionat (HVAC) dels edificis Γ©s de vital importΓ ncia, ja que representa al voltant del 35% del consum d'energia de l'edifici i afecta directament la comoditat, la productivitat i fins i tot la salut dels ocupants. Avui dia es considera apropiat tenir un control intelΒ·ligent sobre aquest consum energΓ¨tic ja que el preu de l'electricitat ha incrementat significativament en els darrers 2 anys a Espanya i al mΓ³n. En aquest cas, lβ€Ÿobjecte dβ€Ÿestudi Γ©s un magatzem industrial ubicat a Marchamalo, Guadalajara, Espanya. Aquesta instalΒ·laciΓ³ tΓ© una extensiΓ³ de 114.894 m2 amb 15 metres dalΓ§ada i estΓ  equipada amb un sistema de climatitzaciΓ³ amb mΓ¨tode de control ON-OFF. S'han realitzat estudis previs considerant el comportament ambiental real del magatzem, perΓ² tambΓ© s'han realitzat alguns estudis addicionals utilitzant un BessΓ³ Digital d'aquest magatzem, creat pel Centre de DiagnΓ²stic Industrial i FluidodinΓ mica de la UPC (CDIF), que permet entendre el comportament ambiental i de consum denergia de ledifici sota diferents tipus descenaris. Aquest estudi va nΓ©ixer considerant que el CDIF estava explorant noves formes perquΓ¨ el sistema HVAC mantinguΓ©s el confort tΓ¨rmic dins del magatzem, perΓ² alhora essent el mΓ©s eficient possible amb el consum denergia. Tenint en compte les eines disponibles a la nau industrial, i els enfocaments recents per al control d'HVAC, un d'aquests camins Γ©s, en una primera etapa, desenvolupar un model de predicciΓ³ de temperatura basat en xarxes neuronals recurrents amb dades simulades del BessΓ³ Digital , desprΓ©s tornar a entrenar-lo amb dades reals del Sistema de MonitoritzaciΓ³ Ambiental i finalment verificar que tan precises sΓ³n les seves prediccions. AixΓ² permet comprendre si lΓΊs de dades simulades dun bessΓ³ virtual realment podria ajudar a crear models de predicciΓ³ per a aplicacions de la vida real.El funcionamiento de los sistemas de calefacciΓ³n, ventilaciΓ³n y aire acondicionado (HVAC) de los edificios es de vital importancia, ya que representa alrededor del 35% del consumo de energΓ­a del edificio y afecta directamente la comodidad, la productividad e incluso la salud de los ocupantes. Hoy en dΓ­a se considera apropiado tener un control inteligente sobre este consumo energΓ©tico ya que el precio de la electricidad ha incrementado significativamente en los ΓΊltimos 2 aΓ±os en EspaΓ±a y el mundo. En este caso, el objeto de estudio es un almacΓ©n industrial ubicado en Marchamalo, Guadalajara, EspaΓ±a. Esta instalaciΓ³n tiene una extensiΓ³n de 114.894 m2 con 15 metros de altura y estΓ‘ equipada con un sistema de climatizaciΓ³n con mΓ©todo de control ON-OFF. Se han realizado estudios previos considerando el comportamiento ambiental real del almacΓ©n, pero tambiΓ©n se han realizado algunos estudios adicionales utilizando un Gemelo Digital de este almacΓ©n, creado por el Centro de DiagnΓ³stico Industrial y FluidodinΓ‘mica de la UPC (CDIF), que permiten entender el comportamiento ambiental y de consumo de energΓ­a del edificio bajo diferentes tipos de escenarios. Este estudio naciΓ³ considerando que el CDIF estaba explorando nuevas formas para que el sistema HVAC mantuviera el confort tΓ©rmico dentro del almacΓ©n, pero al mismo tiempo siendo lo mΓ‘s eficiente posible con el consumo de energΓ­a. Teniendo en cuenta las herramientas disponibles en la nave industrial, y los enfoques recientes para el control de HVAC, uno de estos caminos es, en una primera etapa, desarrollar un modelo de predicciΓ³n de temperatura basado en redes neuronales recurrentes con datos simulados del Gemelo Digital, luego volver a entrenarlo con datos reales del Sistema de Monitoreo Ambiental y finalmente verificar quΓ© tan precisas son sus predicciones. Esto permite comprender si el uso de datos simulados de un Gemelo Virtual realmente podrΓ­a ayudar a crear modelos de predicciΓ³n para aplicaciones de la vida real.The operation of the heating, ventilation and air conditioning (HVAC) systems of buildings is of vital importance, since it represents around 35% of the energy consumption of the building and directly affects the comfort, productivity and even the health of the buildings. occupants. Nowadays it is considered appropriate to have an intelligent control over this energy consumption since the price of electricity has increased significantly in the last 2 years in Spain and the world. In this case, the object of study is an industrial warehouse located in Marchamalo, Guadalajara, Spain. This facility has an area of ​​114,894 m2 with a height of 15 meters and is equipped with an air conditioning system with an ON-OFF control method. Previous studies have been carried out considering the real environmental behavior of the warehouse, but some additional studies have also been carried out using a Digital Twin of this warehouse, created by the Center for Industrial Diagnosis and Fluid Dynamics of the UPC (CDIF), which allow understanding the behavior environment and energy consumption of the building under different types of scenarios. This study was born considering that the CDIF was exploring new ways for the HVAC system to maintain thermal comfort inside the warehouse, but at the same time being as efficient as possible with energy consumption. Taking into account the tools available in the industrial building, and the recent approaches to HVAC control, one of these paths is, in a first stage, to develop a temperature prediction model based on recurrent neural networks with simulated data from the Digital Twin, then retrain it with real data from the Environmental Monitoring System, and finally check how accurate its predictions are. This allows to understand if the use of simulated data from a Virtual Twin could really help to create prediction models for real life applications

    Forecast and control of heating loads in receding horizon

    Get PDF
    corecore