12,304 research outputs found

    Path prediction and predictive range querying in road network databases

    Get PDF
    In automotive applications, movement-path prediction enables the delivery of predictive and relevant services to drivers, e.g., reporting traffic conditions and gas stations along the route ahead. Path prediction also enables better results of predictive range queries and reduces the location update frequency in vehicle tracking while preserving accuracy. Existing moving-object location prediction techniques in spatial-network settings largely target short-term prediction that does not extend beyond the next road junction. To go beyond short-term prediction, we formulate a network mobility model that offers a concise representation of mobility statistics extracted from massive collections of historical object trajectories. The model aims to capture the turning patterns at junctions and the travel speeds on road segments at the level of individual objects. Based on the mobility model, we present a maximum likelihood and a greedy algorithm for predicting the travel path of an object (for a time duration h into the future). We also present a novel and efficient server-side indexing scheme that supports predictive range queries on the mobility statistics of the objects. Empirical studies with real data suggest that our proposals are effective and efficien

    Enabling near-term prediction of status for intelligent transportation systems: Management techniques for data on mobile objects

    Get PDF
    Location Dependent Queries (LDQs) benefit from the rapid advances in communication and Global Positioning System (GPS) technologies to track moving objects\u27 locations, and improve the quality-of-life by providing location relevant services and information to end users. The enormity of the underlying data maintained by LDQ applications - a large quantity of mobile objects and their frequent mobility - is, however, a major obstacle in providing effective and efficient services. Motivated by this obstacle, this thesis sets out in the quest to find improved methods to efficiently index, access, retrieve, and update volatile LDQ related mobile object data and information. Challenges and research issues are discussed in detail, and solutions are presented and examined. --Abstract, page iii

    Comparing Predictions of Object Movements

    Get PDF
    Estimating the future location of moving objects using different estimation models, such as linear or probabilistic models, has been investigated extensively. However, the location estimations of those models are generally not comparable. For instance, one model might return a position for some object, another one a Gaussian probability distribution, and a third one a uniform distribution. Similar issues arise for query answers. In this paper, we examine the question how estimations of different models can be compared. To do so, we propose a general model based on the central limit theorem. This allows handling different PDF-based approaches as well as models from the other groups (i.e., linear estimations) in a unified manner. Furthermore, we show how to inject privacy into the general model, a fundamental pre-requisite for user acceptance. Thus, we support well-known approaches like k-anonymity and spatial obfuscation. Based on our general model, we conduct a comprehensive experimental study considering a real-world road network; comparing models form different groups for the first time. Our results, for instance, reveal that estimation models based on individual velocity profiles are not necessarily better than models, which estimate the future location of objects only based on their direction. In more abstract terms, our general model allows comparison of estimation models that could not be compared before and gives way to build models that solve the privacy-accuracy challenge

    Accurate and Efficient Query Processing at Location-Based Services by using Route APIs

    Full text link
    Efficient query processing system provides best search results to user by gathering user point of interest. Mobile users required a Location based server (LBS) to search the spatial related data. Existing system provided route results but it takes more time to execute the query and does not gives the accurate results means traffic related travel timings. The proposed system is a fastest processer for location search users. Here, LBS obtain route travel times from online route API. So it gives the accurate results to user by preventing number route request and query execution time. We use range query algorithm to reduce the number of route request and Parallel Scheduling Techniques to reduce the query execution time. Our experimental result shows that the proposed system is more efficient than existing processer

    Continuous Nearest Neighbor Queries over Sliding Windows

    Get PDF
    Abstract—This paper studies continuous monitoring of nearest neighbor (NN) queries over sliding window streams. According to this model, data points continuously stream in the system, and they are considered valid only while they belong to a sliding window that contains 1) the W most recent arrivals (count-based) or 2) the arrivals within a fixed interval W covering the most recent time stamps (time-based). The task of the query processor is to constantly maintain the result of long-running NN queries among the valid data. We present two processing techniques that apply to both count-based and time-based windows. The first one adapts conceptual partitioning, the best existing method for continuous NN monitoring over update streams, to the sliding window model. The second technique reduces the problem to skyline maintenance in the distance-time space and precomputes the future changes in the NN set. We analyze the performance of both algorithms and extend them to variations of NN search. Finally, we compare their efficiency through a comprehensive experimental evaluation. The skyline-based algorithm achieves lower CPU cost, at the expense of slightly larger space overhead. Index Terms—Location-dependent and sensitive, spatial databases, query processing, nearest neighbors, data streams, sliding windows.

    Multiple-Aspect Analysis of Semantic Trajectories

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in WĂĽrzburg, Germany, in September 2019. The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification
    • …
    corecore