428,364 research outputs found
Using a Machine Learning Approach to Implement and Evaluate Product Line Features
Bike-sharing systems are a means of smart transportation in urban
environments with the benefit of a positive impact on urban mobility. In this
paper we are interested in studying and modeling the behavior of features that
permit the end user to access, with her/his web browser, the status of the
Bike-Sharing system. In particular, we address features able to make a
prediction on the system state. We propose to use a machine learning approach
to analyze usage patterns and learn computational models of such features from
logs of system usage.
On the one hand, machine learning methodologies provide a powerful and
general means to implement a wide choice of predictive features. On the other
hand, trained machine learning models are provided with a measure of predictive
performance that can be used as a metric to assess the cost-performance
trade-off of the feature. This provides a principled way to assess the runtime
behavior of different components before putting them into operation.Comment: In Proceedings WWV 2015, arXiv:1508.0338
ICE: Enabling Non-Experts to Build Models Interactively for Large-Scale Lopsided Problems
Quick interaction between a human teacher and a learning machine presents
numerous benefits and challenges when working with web-scale data. The human
teacher guides the machine towards accomplishing the task of interest. The
learning machine leverages big data to find examples that maximize the training
value of its interaction with the teacher. When the teacher is restricted to
labeling examples selected by the machine, this problem is an instance of
active learning. When the teacher can provide additional information to the
machine (e.g., suggestions on what examples or predictive features should be
used) as the learning task progresses, then the problem becomes one of
interactive learning.
To accommodate the two-way communication channel needed for efficient
interactive learning, the teacher and the machine need an environment that
supports an interaction language. The machine can access, process, and
summarize more examples than the teacher can see in a lifetime. Based on the
machine's output, the teacher can revise the definition of the task or make it
more precise. Both the teacher and the machine continuously learn and benefit
from the interaction.
We have built a platform to (1) produce valuable and deployable models and
(2) support research on both the machine learning and user interface challenges
of the interactive learning problem. The platform relies on a dedicated,
low-latency, distributed, in-memory architecture that allows us to construct
web-scale learning machines with quick interaction speed. The purpose of this
paper is to describe this architecture and demonstrate how it supports our
research efforts. Preliminary results are presented as illustrations of the
architecture but are not the primary focus of the paper
An automated ETL for online datasets
While using online datasets for machine learning is commonplace today, the quality of these datasets impacts on the performance
of prediction algorithms. One method for improving the semantics of new data sources is to map these sources to a common
data model or ontology. While semantic and structural heterogeneities must still be resolved, this provides a well established
approach to providing clean datasets, suitable for machine learning and analysis. However, when there is a requirement for a
close to real time usage of online data, a method for dynamic Extract-Transform-Load of new sources data must be developed.
In this work, we present a framework for integrating online and enterprise data sources, in close to real time, to provide
datasets for machine learning and predictive algorithms. An exhaustive evaluation compares a human built data transformation
process with our system’s machine generated ETL process, with very favourable results, illustrating the value and impact of
an automated approach
Industry-scale application and evaluation of deep learning for drug target prediction
Artificial intelligence (AI) is undergoing a revolution thanks to the breakthroughs of machine learning algorithms in computer vision, speech recognition, natural language processing and generative modelling. Recent works on publicly available pharmaceutical data showed that AI methods are highly promising for Drug Target prediction. However, the quality of public data might be different than that of industry data due to different labs reporting measurements, different measurement techniques, fewer samples and less diverse and specialized assays. As part of a European funded project (ExCAPE), that brought together expertise from pharmaceutical industry, machine learning, and high-performance computing, we investigated how well machine learning models obtained from public data can be transferred to internal pharmaceutical industry data. Our results show that machine learning models trained on public data can indeed maintain their predictive power to a large degree when applied to industry data. Moreover, we observed that deep learning derived machine learning models outperformed comparable models, which were trained by other machine learning algorithms, when applied to internal pharmaceutical company datasets. To our knowledge, this is the first large-scale study evaluating the potential of machine learning and especially deep learning directly at the level of industry-scale settings and moreover investigating the transferability of publicly learned target prediction models towards industrial bioactivity prediction pipelines.Web of Science121art. no. 2
- …
