9,179 research outputs found

    Budget-Constrained Item Cold-Start Handling in Collaborative Filtering Recommenders via Optimal Design

    Full text link
    It is well known that collaborative filtering (CF) based recommender systems provide better modeling of users and items associated with considerable rating history. The lack of historical ratings results in the user and the item cold-start problems. The latter is the main focus of this work. Most of the current literature addresses this problem by integrating content-based recommendation techniques to model the new item. However, in many cases such content is not available, and the question arises is whether this problem can be mitigated using CF techniques only. We formalize this problem as an optimization problem: given a new item, a pool of available users, and a budget constraint, select which users to assign with the task of rating the new item in order to minimize the prediction error of our model. We show that the objective function is monotone-supermodular, and propose efficient optimal design based algorithms that attain an approximation to its optimum. Our findings are verified by an empirical study using the Netflix dataset, where the proposed algorithms outperform several baselines for the problem at hand.Comment: 11 pages, 2 figure

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Next challenges for adaptive learning systems

    Get PDF
    Learning from evolving streaming data has become a 'hot' research topic in the last decade and many adaptive learning algorithms have been developed. This research was stimulated by rapidly growing amounts of industrial, transactional, sensor and other business data that arrives in real time and needs to be mined in real time. Under such circumstances, constant manual adjustment of models is in-efficient and with increasing amounts of data is becoming infeasible. Nevertheless, adaptive learning models are still rarely employed in business applications in practice. In the light of rapidly growing structurally rich 'big data', new generation of parallel computing solutions and cloud computing services as well as recent advances in portable computing devices, this article aims to identify the current key research directions to be taken to bring the adaptive learning closer to application needs. We identify six forthcoming challenges in designing and building adaptive learning (pre-diction) systems: making adaptive systems scalable, dealing with realistic data, improving usability and trust, integrat-ing expert knowledge, taking into account various application needs, and moving from adaptive algorithms towards adaptive tools. Those challenges are critical for the evolving stream settings, as the process of model building needs to be fully automated and continuous.</jats:p
    • …
    corecore