3 research outputs found

    Vision-based control and autonomous landing of a VTOL-UAV

    Get PDF
    In recent years the popularity of quadrotor unmanned aerial vehicles (UAVs) has increased. Today, UAVs are widely used by military and police forces for surveillance. They are used by industry for such tasks as traffic monitoring, infrastructure inspection or even delivery of goods. They are used by individuals for hobby flying and aerial photography. It is currently of great interest in the research community to improve the level of autonomy of the UAV for these and future uses. One particular problem is the ability to stabilize over and land on a moving platform. This situation can easily arise for a quadrotor returning to a ship at sea or even a landing pad affixed to a vehicle. Many current techniques rely on knowledge of the platform and its motion, or a predictive model. This information is not always available or accurate. A solution that does not require knowledge of the target is desirable. This thesis deals with practical implementation of optical flow based position stabilization and autonomous landing algorithms for a quadrotor UAV. The quadrotor used is a common low cost platform with a large open source community. Firstly, non-linear estimation and control techniques are implemented for the attitude stabilization using low-cost sensors and limited computational power. Some methods for the system parameters estimation are presented and some challenges related to the implementation are discussed. Despite the ability of the attitude controller to stabilize the orientation of the quadrotor, hovering and landing precisely over a specific area is not possible without a position stabilization scheme. In applications where GPS signals are not available and the hovering target is a priori unknown, it is common to rely on visual information. In this context, this thesis aims for the development of an efficient optical-flow-based position stabilization and autonomous landing scheme for the quadrotor UAV

    Automatic Landing of a Rotary-Wing UAV in Rough Seas

    Full text link
    Rotary-wing unmanned aerial vehicles (RUAVs) have created extensive interest in the past few decades due to their unique manoeuverability and because of their suitability in a variety of flight missions ranging from traffic inspection to surveillance and reconnaissance. The ability of a RUAV to operate from a ship in the presence of adverse winds and deck motion could greatly extend its applications in both military and civilian roles. This requires the design of a flight control system to achieve safe and reliable automatic landings. Although ground-based landings in various scenarios have been investigated and some satisfactory flight test results are obtained, automatic shipboard recovery is still a dangerous and challenging task. Also, the highly coupled and inherently unstable flight dynamics of the helicopter exacerbate the difficulty in designing a flight control system which would enable the RUAV to attenuate the gust effect. This thesis makes both theoretical and technical contributions to the shipboard recovery problem of the RUAV operating in rough seas. The first main contribution involves a novel automatic landing scheme which reduces time, cost and experimental resources in the design and testing of the RUAV/ship landing system. The novelty of the proposed landing system enables the RUAV to track slow-varying mean deck height instead of instantaneous deck motion to reduce vertical oscillations. This is achieved by estimating the mean deck height through extracting dominant modes from the estimated deck displacement using the recursive Prony Analysis procedure. The second main contribution is the design of a flight control system with gust-attenuation and rapid position tracking capabilities. A feedback-feedforward controller has been devised for height stabilization in a windy environment based on the construction of an effective gust estimator. Flight tests have been conducted to verify its performance, and they demonstrate improved gust-attenuation capability in the RUAV. The proposed feedback-feedforward controller can dynamically and synchronously compensate for the gust effect. In addition, a nonlinear H1 controller has been designed for horizontal position tracking which shows rapid position tracking performance and gust-attenuation capability when gusts occur. This thesis also contains a description of technical contributions necessary for a real-time evaluation of the landing system. A high-infedlity simulation framework has been developed with the goal of minimizing the number of iterations required for theoretical analysis, simulation verification and flight validation. The real-time performance of the landing system is assessed in simulations using the C-code, which can be easily transferred to the autopilot for flight tests. All the subsystems are parameterized and can be extended to different RUAV platforms. The integration of helicopter flight dynamics, flapping dynamics, ship motion, gust effect, the flight control system and servo dynamics justifies the reliability of the simulation results. Also, practical constraints are imposed on the simulation to check the robustness of the flight control system. The feasibility of the landing procedure is confimed for the Vario helicopter using real-time ship motion data

    Prediction of vertical motions for landing operations of UAVs

    No full text
    Abstract — This paper outlines a novel and feasible procedure to predict vertical motions for safe landing of unmanned aerial vehicles (UAVs) during maritime operations. In the presence of stochastic sea state disturbances, dynamic relationship between an observer and a moving deck is captured by the proposed identification model, in which system order is specified by a new order-determination principle based on Bayes Information Criterion (BIC). In addition, the resulting system model is ex-tended to develop accurate multi-step predictors for estimation of vertical motion dynamics. Simulation results demonstrate that the proposed prediction approach substantially reduces the model complexity and exhibits excellent prediction perfor-mance, making it suitable for integration into ship-helicopter approaches and landing guidance systems. I
    corecore