1,058 research outputs found

    Forecast of Carbon Consumption of a Blast Furnace Using Extreme Learning Machine and Probabilistic Reasoning

    Get PDF
    Blast furnaces are chemical metallurgical reactors for the production of pig iron and slag. The raw materials used (metallic feedstock) are sinter, granulated ore and pellets. The main fuel is metallurgical coke. Considering the existing difficulties in the field of simulation of complex processes, the application of solutions based on neural networks has gained space due to its diversity of application and increase in the reliability of responses. The Extreme Learning Machine is a way to train an artificial neural network (ANN) with only one hidden layer. The database used for numerical simulation corresponds to 3.5 years of reactor operation. Big Data contains 94875 pieces of information divided into 75 variables. The input of the ELM neural network is composed of 72 variables and the output of 3 variables. The selected output variables were coke rate, PCI rate and fuel rate. Artificial neural networks using extreme learning machines and using Big Data are able to predict fuel consumption based on the parameters of the reduction process in blast furnaces, and this can be verified by the accuracy of the model

    A prediction method of silicon content in hot metal of blast furnace

    Get PDF
    In blast furnace smelting, the silicon content in hot metal can indirectly reflect the blast furnace temperature and measure the quality of hot metal. For more accurate prediction, according to the reduction reaction, the input parameters affecting the silicon content are selected to form a data set. The Weighted Random Forest (WRF) prediction model and the Scaling Coefficient Particle Swarm Optimization (SCPSO) algorithm are proposed. The prediction method based on SCPSO-WRF has higher prediction hit rate and lower mean error than those traditional methods. The results show that the prediction hit rate and mean error of SCPSO-WRF are 89,1 % and 0,0291 respectively. The prediction method has theoretical research and practical application value

    Prediction of silicon content in the hot metal using Bayesian networks and probabilistic reasoning

    Get PDF
    The blast furnace is the principal method of producing cast iron. In the production of cast iron, the control of silicon is vital because this impurity is harmful to almost all steels. Artificial neural networks with Bayesian regularization are more robust than traditional back-propagation networks and can reduce or eliminate the need for tedious cross-validation. Bayesian regularization is a mathematical process that converts a nonlinear regression into a "well-posed" statistical problem in the manner of ridge regression. The main objective of this work was to develop an artificial neural network to predict silicon content in hot metal by varying the number of neurons in the hidden layer by 10, 20, 25, 30, 40, 50, 75, and 100 neurons. The results show that all neural networks converged and presented reliable results, neural networks with 20, 25, and 30 neurons showed the best overall results. However, In short, Bayesian neural networks can be used in practice because the actual values correlate excellently with the values calculated by the neural network

    Artificial Neural Network for Predicting Silicon Content in the Hot Metal Produced in a Blast Furnace Fueled by Metallurgical Coke

    Get PDF
    The main production route for cast iron and steel is through the blast furnace. The silicon content in cast iron is an important indicator of the thermal condition of a blast furnace. High silicon contents indicate an increase in the furnace\u2019s thermal input and, in some cases, may indicate an excess of coke in the reactor. As coke costs predominate in the production of cast iron, tighter control of the silicon content therefore has economic advantages. The main objective of this article was to design an artificial neural network to predict the silicon content in hot metal, varying the number of neurons in the hidden layer by 10, 20, 25, 30, 40, 50, 75, 100, 125, 150, 170 and 200 neurons. In general, all neural networks showed excellent results, with the network with 30 neurons showing the best results among the 12 modeled networks. The validation of the models was confirmed using the Mean Square Error (MSE) and Pearson\u2019s correlation coefficient. The cross-validation technique was used to re-evaluate the performance of neural networks. In short, neural networks can be used in practical operations due to the excellent correlations between the real values and those calculated by the neural network

    Data-Driven Dynamic Modeling for Prediction of Molten Iron Silicon Content Using ELM with Self-Feedback

    Get PDF
    Silicon content ([Si] for short) of the molten metal is an important index reflecting the product quality and thermal status of the blast furnace (BF) ironmaking process. Since the online detection of [Si] is difficult and larger time delay exists in the offline assay procedure, quality modeling is required to achieve online estimation of [Si]. Focusing on this problem, a data-driven dynamic modeling method is proposed using improved extreme learning machine (ELM) with the help of principle component analysis (PCA). First, data-driven PCA is introduced to pick out the most pivotal variables from multitudinous factors to serve as the secondary variables of modeling. Second, a novel data-driven ELM modeling technology with good generalization performance and nonlinear mapping capability is presented by applying a self-feedback structure on traditional ELM. The feedback outputs at previous time together with input variables at different time constitute a dynamic ELM structure which has a storage ability to tackle data in different time and overcomes the limitation of static modeling of traditional ELM. At last, industrial experiments demonstrate that the proposed method has a better modeling and estimating accuracy as well as a faster learning speed when compared with different modeling methods with different model structures

    Deep learning for robust forecasting of hot metal silicon content in a blast furnace

    Get PDF
    The hot metal silicon content is a key indicator of the thermal state in the blast furnace and it needs to be kept within a pre-defined range in order to ensure efficient operations. Effective monitoring of silicon content is challenging due to the harsh environment in the furnace and irregularly sampled measurements. Data-driven approaches have been proposed in the literature to predict silicon content using process data and overcome the sparsity of silicon content measurements. However, these approaches rely on the selection of hand-crafted features and ad hoc interpolation methods to deal with irregular sampling of the process variables, adding complexity to model training and optimisation, and requiring significant effort when tuning the model over time to keep it to the required level of accuracy. This paper proposes an improved framework for the prediction of silicon content using a novel deep learning approach based on Phased LSTM. The model has been trained using 3 years of data and validated over a 1-year period using a robust walk-forward validation method, therefore providing confidence in the model performance over time. The Phased LSTM model outperforms competing approaches due to its in-built ability to learn from event-based sequences and scalability for real-world deployments. This is the first time that Phased LSTM has been applied to real-world datasets and results suggest that the ability to learn from event-based data can be beneficial for the process industry where event-driven signals from multiple sensors are common

    A hybrid modelling approach based on deep learning for the prediction of the silicon content in the blast furnace

    Get PDF
    The blast furnace is an important part of the steelmaking process, and its main function is to melt and reduce oxygen from the iron ore for subsequent processing into the steel-ironmaking process. Due to its complexity, Blast Furnaces need to operate near their practical limits because of economic and environmental constraints. The capacity to monitor and regulate the process's thermal condition is, however, constrained by the harsh operating conditions inside the furnace. The amount of silicon present in pig iron, which is the metallic iron generated by the blast furnace process, serves as a crucial indicator of the furnace's thermal condition. Therefore, the creation of a predictive model is essential to assist in proactive control of the furnace's thermal condition because measurements of this crucial variable can only be sampled at sporadic and irregular intervals and analysis of the sample introduces a substantial delay. In this paper, an improved hybrid modelling methodology is introduced for blast furnace operation, which integrates physical and data-driven models. Deep Learning based Autoencoders are used for the prediction of the changes in silicon concentration with respect to time and that helps users to avoid running frequent and costly feature pre-processing procedures and correlation studies. Integrating the physical model improved the prediction accuracy compared to a purely data-driven model

    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy

    Get PDF
    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy, Zagreb, Croatia, March 22-23, 2022. Abstracts are organized in four sections: Materials - section A; Process metallurgy - Section B; Plastic processing - Section C and Metallurgy and related topics - Section D

    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy

    Get PDF
    Book of abstracts of the 15th International Symposium of Croatian Metallurgical Society - SHMD \u272022, Materials and metallurgy, Zagreb, Croatia, March 22-23, 2022. Abstracts are organized in four sections: Materials - section A; Process metallurgy - Section B; Plastic processing - Section C and Metallurgy and related topics - Section D

    Process Modeling in Pyrometallurgical Engineering

    Get PDF
    The Special Issue presents almost 40 papers on recent research in modeling of pyrometallurgical systems, including physical models, first-principles models, detailed CFD and DEM models as well as statistical models or models based on machine learning. The models cover the whole production chain from raw materials processing through the reduction and conversion unit processes to ladle treatment, casting, and rolling. The papers illustrate how models can be used for shedding light on complex and inaccessible processes characterized by high temperatures and hostile environment, in order to improve process performance, product quality, or yield and to reduce the requirements of virgin raw materials and to suppress harmful emissions
    corecore