54,052 research outputs found

    Tensor Representation in High-Frequency Financial Data for Price Change Prediction

    Full text link
    Nowadays, with the availability of massive amount of trade data collected, the dynamics of the financial markets pose both a challenge and an opportunity for high frequency traders. In order to take advantage of the rapid, subtle movement of assets in High Frequency Trading (HFT), an automatic algorithm to analyze and detect patterns of price change based on transaction records must be available. The multichannel, time-series representation of financial data naturally suggests tensor-based learning algorithms. In this work, we investigate the effectiveness of two multilinear methods for the mid-price prediction problem against other existing methods. The experiments in a large scale dataset which contains more than 4 millions limit orders show that by utilizing tensor representation, multilinear models outperform vector-based approaches and other competing ones.Comment: accepted in SSCI 2017, typos fixe

    Forecasting Financial Time Series using Linear Predictive Filters

    No full text
    Forecasting financial time series is regarded as one of the most challenging applications of time series prediction due to their dynamic nature. However, it is the fundamental element of most investment activities thus attracting the attention of practitioners and researchers for many decades. The purpose of this research is to investigate and develop novel methods for the prediction of financial time series considering their dynamic nature. The predictive performance of asset prices time series themselves is exploited by applying digital signal processing methods to their historical observations. The novelty of the research lies in the design of predictive filters by maximising their spectrum flatness of forecast errors. The filters are then applied to forecast linear combinations of daily open, high, low and close prices of financial time series. Given the assumption that there are no structural breaks or switching regimes in a time series, the sufficient and necessary conditions that a time series can be predicted with zero errors by linear filters are examined. It is concluded that a band-limited time series can be predicted with zero errors by a predictive filter that has a constant magnitude response and constant group delay over the bandwidth of the time series. Because real world time series are not band-limited thus cannot be forecasted without errors, statistical tests of spectrum flatness which evaluate the departure of the spectral density from a constant value are introduced as measures of the predictability of time series. Properties of a time series are then investigated in the frequency domain using its spectrum flatness. A predictive filter is designed by maximising the error spectrum flatness that is equivalent to maximise the “whiteness” of forecast errors in the frequency domain. The focus is then placed on forecasting real world financial time series. By applying spectrum flatness tests, it is found that the property of the spectrum of a linear combination of daily open, high, low and close prices, which is called target prices, is different from that of a random walk process as there are much more low frequency components than high frequency ones in its spectrum. Therefore, an objective function is proposed to derive the target price time series from the historical observations of daily open, high, low and close prices. A predictive filter is then applied to obtain the one-step ahead forecast of the target prices, while profitable trading strategies are designed based on the forecast of target prices series. As a result, more than 70% success ratio could be achieved in terms of one-step ahead out-of-sample forecast of direction changes of the target price time series by taking the S&P500 index for example

    DeepLOB: Deep Convolutional Neural Networks for Limit Order Books

    Get PDF
    We develop a large-scale deep learning model to predict price movements from limit order book (LOB) data of cash equities. The architecture utilises convolutional filters to capture the spatial structure of the limit order books as well as LSTM modules to capture longer time dependencies. The proposed network outperforms all existing state-of-the-art algorithms on the benchmark LOB dataset [1]. In a more realistic setting, we test our model by using one year market quotes from the London Stock Exchange and the model delivers a remarkably stable out-of-sample prediction accuracy for a variety of instruments. Importantly, our model translates well to instruments which were not part of the training set, indicating the model's ability to extract universal features. In order to better understand these features and to go beyond a "black box" model, we perform a sensitivity analysis to understand the rationale behind the model predictions and reveal the components of LOBs that are most relevant. The ability to extract robust features which translate well to other instruments is an important property of our model which has many other applications.Comment: 12 pages, 9 figure

    Relationship between degree of efficiency and prediction in stock price changes

    Full text link
    This study investigates empirically whether the degree of stock market efficiency is related to the prediction power of future price change using the indices of twenty seven stock markets. Efficiency refers to weak-form efficient market hypothesis (EMH) in terms of the information of past price changes. The prediction power corresponds to the hit-rate, which is the rate of the consistency between the direction of actual price change and that of predicted one, calculated by the nearest neighbor prediction method (NN method) using the out-of-sample. In this manuscript, the Hurst exponent and the approximate entropy (ApEn) are used as the quantitative measurements of the degree of efficiency. The relationship between the Hurst exponent, reflecting the various time correlation property, and the ApEn value, reflecting the randomness in the time series, shows negative correlation. However, the average prediction power on the direction of future price change has the strongly positive correlation with the Hurst exponent, and the negative correlation with the ApEn. Therefore, the market index with less market efficiency has higher prediction power for future price change than one with higher market efficiency when we analyze the market using the past price change pattern. Furthermore, we show that the Hurst exponent, a measurement of the long-term memory property, provides more significant information in terms of prediction of future price changes than the ApEn and the NN method.Comment: 10 page

    Predicting stock market movements using network science: An information theoretic approach

    Full text link
    A stock market is considered as one of the highly complex systems, which consists of many components whose prices move up and down without having a clear pattern. The complex nature of a stock market challenges us on making a reliable prediction of its future movements. In this paper, we aim at building a new method to forecast the future movements of Standard & Poor's 500 Index (S&P 500) by constructing time-series complex networks of S&P 500 underlying companies by connecting them with links whose weights are given by the mutual information of 60-minute price movements of the pairs of the companies with the consecutive 5,340 minutes price records. We showed that the changes in the strength distributions of the networks provide an important information on the network's future movements. We built several metrics using the strength distributions and network measurements such as centrality, and we combined the best two predictors by performing a linear combination. We found that the combined predictor and the changes in S&P 500 show a quadratic relationship, and it allows us to predict the amplitude of the one step future change in S&P 500. The result showed significant fluctuations in S&P 500 Index when the combined predictor was high. In terms of making the actual index predictions, we built ARIMA models. We found that adding the network measurements into the ARIMA models improves the model accuracy. These findings are useful for financial market policy makers as an indicator based on which they can interfere with the markets before the markets make a drastic change, and for quantitative investors to improve their forecasting models.Comment: 13 pages, 7 figures, 3 table
    corecore