7,604 research outputs found

    Recurrent Neural Networks for Online Video Popularity Prediction

    Full text link
    In this paper, we address the problem of popularity prediction of online videos shared in social media. We prove that this challenging task can be approached using recently proposed deep neural network architectures. We cast the popularity prediction problem as a classification task and we aim to solve it using only visual cues extracted from videos. To that end, we propose a new method based on a Long-term Recurrent Convolutional Network (LRCN) that incorporates the sequentiality of the information in the model. Results obtained on a dataset of over 37'000 videos published on Facebook show that using our method leads to over 30% improvement in prediction performance over the traditional shallow approaches and can provide valuable insights for content creators

    Shallow reading with Deep Learning: Predicting popularity of online content using only its title

    Full text link
    With the ever decreasing attention span of contemporary Internet users, the title of online content (such as a news article or video) can be a major factor in determining its popularity. To take advantage of this phenomenon, we propose a new method based on a bidirectional Long Short-Term Memory (LSTM) neural network designed to predict the popularity of online content using only its title. We evaluate the proposed architecture on two distinct datasets of news articles and news videos distributed in social media that contain over 40,000 samples in total. On those datasets, our approach improves the performance over traditional shallow approaches by a margin of 15%. Additionally, we show that using pre-trained word vectors in the embedding layer improves the results of LSTM models, especially when the training set is small. To our knowledge, this is the first attempt of applying popularity prediction using only textual information from the title

    Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks

    Full text link
    Prediction of popularity has profound impact for social media, since it offers opportunities to reveal individual preference and public attention from evolutionary social systems. Previous research, although achieves promising results, neglects one distinctive characteristic of social data, i.e., sequentiality. For example, the popularity of online content is generated over time with sequential post streams of social media. To investigate the sequential prediction of popularity, we propose a novel prediction framework called Deep Temporal Context Networks (DTCN) by incorporating both temporal context and temporal attention into account. Our DTCN contains three main components, from embedding, learning to predicting. With a joint embedding network, we obtain a unified deep representation of multi-modal user-post data in a common embedding space. Then, based on the embedded data sequence over time, temporal context learning attempts to recurrently learn two adaptive temporal contexts for sequential popularity. Finally, a novel temporal attention is designed to predict new popularity (the popularity of a new user-post pair) with temporal coherence across multiple time-scales. Experiments on our released image dataset with about 600K Flickr photos demonstrate that DTCN outperforms state-of-the-art deep prediction algorithms, with an average of 21.51% relative performance improvement in the popularity prediction (Spearman Ranking Correlation).Comment: accepted in IJCAI-1
    • …
    corecore