19,000 research outputs found

    Task Runtime Prediction in Scientific Workflows Using an Online Incremental Learning Approach

    Full text link
    Many algorithms in workflow scheduling and resource provisioning rely on the performance estimation of tasks to produce a scheduling plan. A profiler that is capable of modeling the execution of tasks and predicting their runtime accurately, therefore, becomes an essential part of any Workflow Management System (WMS). With the emergence of multi-tenant Workflow as a Service (WaaS) platforms that use clouds for deploying scientific workflows, task runtime prediction becomes more challenging because it requires the processing of a significant amount of data in a near real-time scenario while dealing with the performance variability of cloud resources. Hence, relying on methods such as profiling tasks' execution data using basic statistical description (e.g., mean, standard deviation) or batch offline regression techniques to estimate the runtime may not be suitable for such environments. In this paper, we propose an online incremental learning approach to predict the runtime of tasks in scientific workflows in clouds. To improve the performance of the predictions, we harness fine-grained resources monitoring data in the form of time-series records of CPU utilization, memory usage, and I/O activities that are reflecting the unique characteristics of a task's execution. We compare our solution to a state-of-the-art approach that exploits the resources monitoring data based on regression machine learning technique. From our experiments, the proposed strategy improves the performance, in terms of the error, up to 29.89%, compared to the state-of-the-art solutions.Comment: Accepted for presentation at main conference track of 11th IEEE/ACM International Conference on Utility and Cloud Computin

    Predicting Scheduling Failures in the Cloud

    Full text link
    Cloud Computing has emerged as a key technology to deliver and manage computing, platform, and software services over the Internet. Task scheduling algorithms play an important role in the efficiency of cloud computing services as they aim to reduce the turnaround time of tasks and improve resource utilization. Several task scheduling algorithms have been proposed in the literature for cloud computing systems, the majority relying on the computational complexity of tasks and the distribution of resources. However, several tasks scheduled following these algorithms still fail because of unforeseen changes in the cloud environments. In this paper, using tasks execution and resource utilization data extracted from the execution traces of real world applications at Google, we explore the possibility of predicting the scheduling outcome of a task using statistical models. If we can successfully predict tasks failures, we may be able to reduce the execution time of jobs by rescheduling failed tasks earlier (i.e., before their actual failing time). Our results show that statistical models can predict task failures with a precision up to 97.4%, and a recall up to 96.2%. We simulate the potential benefits of such predictions using the tool kit GloudSim and found that they can improve the number of finished tasks by up to 40%. We also perform a case study using the Hadoop framework of Amazon Elastic MapReduce (EMR) and the jobs of a gene expression correlations analysis study from breast cancer research. We find that when extending the scheduler of Hadoop with our predictive models, the percentage of failed jobs can be reduced by up to 45%, with an overhead of less than 5 minutes

    A Graph Neural Network Approach to Nanosatellite Task Scheduling: Insights into Learning Mixed-Integer Models

    Full text link
    This study investigates how to schedule nanosatellite tasks more efficiently using Graph Neural Networks (GNN). In the Offline Nanosatellite Task Scheduling (ONTS) problem, the goal is to find the optimal schedule for tasks to be carried out in orbit while taking into account Quality-of-Service (QoS) considerations such as priority, minimum and maximum activation events, execution time-frames, periods, and execution windows, as well as constraints on the satellite's power resources and the complexity of energy harvesting and management. The ONTS problem has been approached using conventional mathematical formulations and precise methods, but their applicability to challenging cases of the problem is limited. This study examines the use of GNNs in this context, which has been effectively applied to many optimization problems, including traveling salesman problems, scheduling problems, and facility placement problems. Here, we fully represent MILP instances of the ONTS problem in bipartite graphs. We apply a feature aggregation and message-passing methodology allied to a ReLU activation function to learn using a classic deep learning model, obtaining an optimal set of parameters. Furthermore, we apply Explainable AI (XAI), another emerging field of research, to determine which features -- nodes, constraints -- had the most significant impact on learning performance, shedding light on the inner workings and decision process of such models. We also explored an early fixing approach by obtaining an accuracy above 80\% both in predicting the feasibility of a solution and the probability of a decision variable value being in the optimal solution. Our results point to GNNs as a potentially effective method for scheduling nanosatellite tasks and shed light on the advantages of explainable machine learning models for challenging combinatorial optimization problems

    Calendar.help: Designing a Workflow-Based Scheduling Agent with Humans in the Loop

    Full text link
    Although information workers may complain about meetings, they are an essential part of their work life. Consequently, busy people spend a significant amount of time scheduling meetings. We present Calendar.help, a system that provides fast, efficient scheduling through structured workflows. Users interact with the system via email, delegating their scheduling needs to the system as if it were a human personal assistant. Common scheduling scenarios are broken down using well-defined workflows and completed as a series of microtasks that are automated when possible and executed by a human otherwise. Unusual scenarios fall back to a trained human assistant who executes them as unstructured macrotasks. We describe the iterative approach we used to develop Calendar.help, and share the lessons learned from scheduling thousands of meetings during a year of real-world deployments. Our findings provide insight into how complex information tasks can be broken down into repeatable components that can be executed efficiently to improve productivity.Comment: 10 page

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00
    • …
    corecore