1,551 research outputs found

    Predicting worker disagreement for more effective crowd labeling

    Get PDF
    Crowdsourcing is a popular mechanism used for labeling tasks to produce large corpora for training. However, producing a reliable crowd labeled training corpus is challenging and resource consuming. Research on crowdsourcing has shown that label quality is much affected by worker engagement and expertise. In this study, we postulate that label quality can also be affected by inherent ambiguity of the documents to be labeled. Such ambiguities are not known in advance, of course, but, once encountered by the workers, they lead to disagreement in the labeling – a disagreement that cannot be resolved by employing more workers. To deal with this problem, we propose a crowd labeling framework: we train a disagreement predictor on a small seed of documents, and then use this predictor to decide which documents of the complete corpus should be labeled and which should be checked for document-inherent ambiguities before assigning (and potentially wasting) worker effort on them. We report on the findings of the experiments we conducted on crowdsourcing a Twitter corpus for sentiment classification

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201
    corecore