5 research outputs found

    GANs for EVT Based Model Parameter Estimation in Real-time Ultra-Reliable Communication

    Full text link
    The Ultra-Reliable Low-Latency Communications (URLLC) paradigm in sixth-generation (6G) systems heavily relies on precise channel modeling, especially when dealing with rare and extreme events within wireless communication channels. This paper explores a novel methodology integrating Extreme Value Theory (EVT) and Generative Adversarial Networks (GANs) to achieve the precise channel modeling in real-time. The proposed approach harnesses EVT by employing the Generalized Pareto Distribution (GPD) to model the distribution of extreme events. Subsequently, Generative Adversarial Networks (GANs) are employed to estimate the parameters of the GPD. In contrast to conventional GAN configurations that focus on estimating the overall distribution, the proposed approach involves the incorporation of an additional block within the GAN structure. This specific augmentation is designed with the explicit purpose of directly estimating the parameters of the Generalized Pareto Distribution (GPD). Through extensive simulations across different sample sizes, the proposed GAN based approach consistently demonstrates superior adaptability, surpassing Maximum Likelihood Estimation (MLE), particularly in scenarios with limited sample sizes

    Real-Time Emotion Recognition System using Facial Expressions and Soft Computing methodologies

    Get PDF
    Facial Expression conveys non-verbal cues, which plays an important role in interpersonal relations. The Cognitive Emotion AI system is the process of identifying the emotional state of a person. The main aim of our study is to develop a robust system which can detect as well as recognize human emotion from live feed. There are some emotions which are universal to all human beings like angry, sad, happy, surprise, fear, disgust and neutral. The methodology of this system is based on two stages- facial detection is done by extraction of Haar Cascade features of a face using Viola Jones algorithm and then the emotion is verified and recognized using Artificial Intelligence Techniques. The system will take image or frame as an input and by providing the image to the model the model will perform the preprocessing and feature selection after that it will be predict the emotional state

    A Statistical Learning Approach to Ultra-Reliable Low Latency Communication

    Get PDF
    Mission-critical applications require Ultra-Reliable Low Latency (URLLC) wireless connections, where the packet error rate (PER) goes down to 10βˆ’910^{-9}. Fulfillment of the bold reliability figures becomes meaningful only if it can be related to a statistical model in which the URLLC system operates. However, this model is generally not known and needs to be learned by sampling the wireless environment. In this paper we treat this fundamental problem in the simplest possible communication-theoretic setting: selecting a transmission rate over a dynamic wireless channel in order to guarantee high transmission reliability. We introduce a novel statistical framework for design and assessment of URLLC systems, consisting of three key components: (i) channel model selection; (ii) learning the model using training; (3) selecting the transmission rate to satisfy the required reliability. As it is insufficient to specify the URLLC requirements only through PER, two types of statistical constraints are introduced, Averaged Reliability (AR) and Probably Correct Reliability (PCR). The analysis and the evaluations show that adequate model selection and learning are indispensable for designing consistent physical layer that asymptotically behaves as if the channel was known perfectly, while maintaining the reliability requirements in URLLC systems.Comment: Submitted for publicatio
    corecore