778 research outputs found

    An Empirical Evaluation Of Social Influence Metrics

    Full text link
    Predicting when an individual will adopt a new behavior is an important problem in application domains such as marketing and public health. This paper examines the perfor- mance of a wide variety of social network based measurements proposed in the literature - which have not been previously compared directly. We study the probability of an individual becoming influenced based on measurements derived from neigh- borhood (i.e. number of influencers, personal network exposure), structural diversity, locality, temporal measures, cascade mea- sures, and metadata. We also examine the ability to predict influence based on choice of classifier and how the ratio of positive to negative samples in both training and testing affect prediction results - further enabling practical use of these concepts for social influence applications.Comment: 8 pages, 5 figure

    PREDICTION IN SOCIAL MEDIA FOR MONITORING AND RECOMMENDATION

    Get PDF
    Social media including blogs and microblogs provide a rich window into user online activity. Monitoring social media datasets can be expensive due to the scale and inherent noise in such data streams. Monitoring and prediction can provide significant benefit for many applications including brand monitoring and making recommendations. Consider a focal topic and posts on multiple blog channels on this topic. Being able to target a few potentially influential blog channels which will contain relevant posts is valuable. Once these channels have been identified, a user can proactively join the conversation themselves to encourage positive word-of-mouth and to mitigate negative word-of-mouth. Links between different blog channels, and retweets and mentions between different microblog users, are a proxy of information flow and influence. When trying to monitor where information will flow and who will be influenced by a focal user, it is valuable to predict future links, retweets and mentions. Predictions of users who will post on a focal topic or who will be influenced by a focal user can yield valuable recommendations. In this thesis we address the problem of prediction in social media to select social media channels for monitoring and recommendation. Our analysis focuses on individual authors and linkers. We address a series of prediction problems including future author prediction problem and future link prediction problem in the blogosphere, as well as prediction in microblogs such as twitter. For the future author prediction in the blogosphere, where there are network properties and content properties, we develop prediction methods inspired by information retrieval approaches that use historical posts in the blog channel for prediction. We also train a ranking support vector machine (SVM) to solve the problem, considering both network properties and content properties. We identify a number of features which have impact on prediction accuracy. For the future link prediction in the blogosphere, we compare multiple link prediction methods, and show that our proposed solution which combines the network properties of the blog with content properties does better than methods which examine network properties or content properties in isolation. Most of the previous work has only looked at either one or the other. For the prediction in microblogs, where there are follower network, retweet network, and mention network, we propose a prediction model to utilize the hybrid network for prediction. In this model, we define a potential function that reflects the likelihood of a candidate user having a specific type of link to a focal user in the future and identify an optimization problem by the principle of maximum likelihood to determine the parameters in the model. We propose different approximate approaches based on the prediction model. Our approaches are demonstrated to outperform the baseline methods which only consider one network or utilize hybrid networks in a naive way. The prediction model can be applied to other similar problems where hybrid networks exist

    Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams

    Full text link
    Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We introduce an extensible framework that will enable the real-time analysis of meme diffusion in social media by mining, visualizing, mapping, classifying, and modeling massive streams of public microblogging events. We describe a Web service that leverages this framework to track political memes in Twitter and help detect astroturfing, smear campaigns, and other misinformation in the context of U.S. political elections. We present some cases of abusive behaviors uncovered by our service. Finally, we discuss promising preliminary results on the detection of suspicious memes via supervised learning based on features extracted from the topology of the diffusion networks, sentiment analysis, and crowdsourced annotations

    TwitterMancer: Predicting Interactions on Twitter Accurately

    Full text link
    This paper investigates the interplay between different types of user interactions on Twitter, with respect to predicting missing or unseen interactions. For example, given a set of retweet interactions between Twitter users, how accurately can we predict reply interactions? Is it more difficult to predict retweet or quote interactions between a pair of accounts? Also, how important is time locality, and which features of interaction patterns are most important to enable accurate prediction of specific Twitter interactions? Our empirical study of Twitter interactions contributes initial answers to these questions. We have crawled an extensive dataset of Greek-speaking Twitter accounts and their follow, quote, retweet, reply interactions over a period of a month. We find we can accurately predict many interactions of Twitter users. Interestingly, the most predictive features vary with the user profiles, and are not the same across all users. For example, for a pair of users that interact with a large number of other Twitter users, we find that certain "higher-dimensional" triads, i.e., triads that involve multiple types of interactions, are very informative, whereas for less active Twitter users, certain in-degrees and out-degrees play a major role. Finally, we provide various other insights on Twitter user behavior. Our code and data are available at https://github.com/twittermancer/. Keywords: Graph mining, machine learning, social media, social network

    TwitterMancer: predicting interactions on Twitter accurately

    Full text link
    This paper investigates the interplay between different types of user interactions on Twitter, with respect to predicting missing or unseen interactions. For example, given a set of retweet interactions between Twitter users, how accurately can we predict reply interactions? Is it more difficult to predict retweet or quote interactions between a pair of accounts? Also, how important is time locality, and which features of interaction patterns are most important to enable accurate prediction of specific Twitter interactions? Our empirical study of Twitter interactions contributes initial answers to these questions.We have crawled an extensive data set of Greek-speaking Twitter accounts and their follow, quote, retweet, reply interactions over a period of a month. We find we can accurately predict many interactions of Twitter users. Interestingly, the most predictive features vary with the user profiles, and are not the same across all users. For example, for a pair of users that interact with a large number of other Twitter users, we find that certain “higher-dimensional” triads, i.e., triads that involve multiple types of interactions, are very informative, whereas for less active Twitter users, certain in-degrees and out-degrees play a major role. Finally, we provide various other insights on Twitter user behavior. Our code and data are available at https://github.com/twittermancer/.Accepted manuscrip
    • …
    corecore