2 research outputs found

    Predicting Temporal Sets with Deep Neural Networks

    Full text link
    Given a sequence of sets, where each set contains an arbitrary number of elements, the problem of temporal sets prediction aims to predict the elements in the subsequent set. In practice, temporal sets prediction is much more complex than predictive modelling of temporal events and time series, and is still an open problem. Many possible existing methods, if adapted for the problem of temporal sets prediction, usually follow a two-step strategy by first projecting temporal sets into latent representations and then learning a predictive model with the latent representations. The two-step approach often leads to information loss and unsatisfactory prediction performance. In this paper, we propose an integrated solution based on the deep neural networks for temporal sets prediction. A unique perspective of our approach is to learn element relationship by constructing set-level co-occurrence graph and then perform graph convolutions on the dynamic relationship graphs. Moreover, we design an attention-based module to adaptively learn the temporal dependency of elements and sets. Finally, we provide a gated updating mechanism to find the hidden shared patterns in different sequences and fuse both static and dynamic information to improve the prediction performance. Experiments on real-world data sets demonstrate that our approach can achieve competitive performances even with a portion of the training data and can outperform existing methods with a significant margin.Comment: 9 pages, 6 figures, Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '2020

    Masked and Swapped Sequence Modeling for Next Novel Basket Recommendation in Grocery Shopping

    Full text link
    Next basket recommendation (NBR) is the task of predicting the next set of items based on a sequence of already purchased baskets. It is a recommendation task that has been widely studied, especially in the context of grocery shopping. In next basket recommendation (NBR), it is useful to distinguish between repeat items, i.e., items that a user has consumed before, and explore items, i.e., items that a user has not consumed before. Most NBR work either ignores this distinction or focuses on repeat items. We formulate the next novel basket recommendation (NNBR) task, i.e., the task of recommending a basket that only consists of novel items, which is valuable for both real-world application and NBR evaluation. We evaluate how existing NBR methods perform on the NNBR task and find that, so far, limited progress has been made w.r.t. the NNBR task. To address the NNBR task, we propose a simple bi-directional transformer basket recommendation model (BTBR), which is focused on directly modeling item-to-item correlations within and across baskets instead of learning complex basket representations. To properly train BTBR, we propose and investigate several masking strategies and training objectives: (i) item-level random masking, (ii) item-level select masking, (iii) basket-level all masking, (iv) basket-level explore masking, and (v) joint masking. In addition, an item-basket swapping strategy is proposed to enrich the item interactions within the same baskets. We conduct extensive experiments on three open datasets with various characteristics. The results demonstrate the effectiveness of BTBR and our masking and swapping strategies for the NNBR task. BTBR with a properly selected masking and swapping strategy can substantially improve NNBR performance.Comment: To appear at RecSys'2
    corecore