7 research outputs found

    Predicting Semantic Relations using Global Graph Properties

    Full text link
    Semantic graphs, such as WordNet, are resources which curate natural language on two distinguishable layers. On the local level, individual relations between synsets (semantic building blocks) such as hypernymy and meronymy enhance our understanding of the words used to express their meanings. Globally, analysis of graph-theoretic properties of the entire net sheds light on the structure of human language as a whole. In this paper, we combine global and local properties of semantic graphs through the framework of Max-Margin Markov Graph Models (M3GM), a novel extension of Exponential Random Graph Model (ERGM) that scales to large multi-relational graphs. We demonstrate how such global modeling improves performance on the local task of predicting semantic relations between synsets, yielding new state-of-the-art results on the WN18RR dataset, a challenging version of WordNet link prediction in which "easy" reciprocal cases are removed. In addition, the M3GM model identifies multirelational motifs that are characteristic of well-formed lexical semantic ontologies.Comment: EMNLP 201

    Technological taxonomies for hypernym and hyponym retrieval in patent texts

    Full text link
    This paper presents an automatic approach to creating taxonomies of technical terms based on the Cooperative Patent Classification (CPC). The resulting taxonomy contains about 170k nodes in 9 separate technological branches and is freely available. We also show that a Text-to-Text Transfer Transformer (T5) model can be fine-tuned to generate hypernyms and hyponyms with relatively high precision, confirming the manually assessed quality of the resource. The T5 model opens the taxonomy to any new technological terms for which a hypernym can be generated, thus making the resource updateable with new terms, an essential feature for the constantly evolving field of technological terminology.Comment: ToTh 2022 - Terminology & Ontology: Theories and applications, Jun 2022, Chamb{\'e}ry, Franc

    Improving Neural Relation Extraction with Implicit Mutual Relations

    Full text link
    Relation extraction (RE) aims at extracting the relation between two entities from the text corpora. It is a crucial task for Knowledge Graph (KG) construction. Most existing methods predict the relation between an entity pair by learning the relation from the training sentences, which contain the targeted entity pair. In contrast to existing distant supervision approaches that suffer from insufficient training corpora to extract relations, our proposal of mining implicit mutual relation from the massive unlabeled corpora transfers the semantic information of entity pairs into the RE model, which is more expressive and semantically plausible. After constructing an entity proximity graph based on the implicit mutual relations, we preserve the semantic relations of entity pairs via embedding each vertex of the graph into a low-dimensional space. As a result, we can easily and flexibly integrate the implicit mutual relations and other entity information, such as entity types, into the existing RE methods. Our experimental results on a New York Times and another Google Distant Supervision datasets suggest that our proposed neural RE framework provides a promising improvement for the RE task, and significantly outperforms the state-of-the-art methods. Moreover, the component for mining implicit mutual relations is so flexible that can help to improve the performance of both CNN-based and RNN-based RE models significant.Comment: 12 page

    Learning Relation Prototype from Unlabeled Texts for Long-tail Relation Extraction

    Full text link
    Relation Extraction (RE) is a vital step to complete Knowledge Graph (KG) by extracting entity relations from texts.However, it usually suffers from the long-tail issue. The training data mainly concentrates on a few types of relations, leading to the lackof sufficient annotations for the remaining types of relations. In this paper, we propose a general approach to learn relation prototypesfrom unlabeled texts, to facilitate the long-tail relation extraction by transferring knowledge from the relation types with sufficient trainingdata. We learn relation prototypes as an implicit factor between entities, which reflects the meanings of relations as well as theirproximities for transfer learning. Specifically, we construct a co-occurrence graph from texts, and capture both first-order andsecond-order entity proximities for embedding learning. Based on this, we further optimize the distance from entity pairs tocorresponding prototypes, which can be easily adapted to almost arbitrary RE frameworks. Thus, the learning of infrequent or evenunseen relation types will benefit from semantically proximate relations through pairs of entities and large-scale textual information.We have conducted extensive experiments on two publicly available datasets: New York Times and Google Distant Supervision.Compared with eight state-of-the-art baselines, our proposed model achieves significant improvements (4.1% F1 on average). Furtherresults on long-tail relations demonstrate the effectiveness of the learned relation prototypes. We further conduct an ablation study toinvestigate the impacts of varying components, and apply it to four basic relation extraction models to verify the generalization ability.Finally, we analyze several example cases to give intuitive impressions as qualitative analysis. Our codes will be released later
    corecore