2,757 research outputs found

    Novel Modeling of Combinatorial miRNA Targeting Identifies SNP with Potential Role in Bone Density

    Get PDF
    MicroRNAs (miRNAs) are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting), a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD) in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential tool for miRNA-related studies. © 2012 Coronnello et al

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Understanding The Intra And Inter-Cellular Interaction Complexities And Flexibilities Using Systems And Sequence Analysis Approach

    Get PDF
    The present thesis work has been undertaken to gain an understanding of intra-cellular or inter-cellular interactions between bio-molecular entities utilizing either a systems analysis based perspective or different sequence analysis approaches. During this study different principles likely to be prevalent among intra-cellular and inter-cellular interactions have been studied with the help of computational approaches. Broadly, the complexities in intra-cellular interactions have been studied by determining the effect of perturbations such as over-expression or down-regulation of a key regulator on the intra-cellular interaction network architecture or its components. In particular, network analysis of regulatory network proteins in association with the intra-cellular proteinprotein interaction network, led to a key observation that topologically important effector proteins in the regulatory network could be important signaling proteins. Identification of such important effector proteins essential for the regulatory network integrity of a key regulator may be performed by network analysis. It is likely that alterations in these important effector proteins may lead to disruptions in cellular physiology and as such in this manner probable disease associated entities can be determined. Alternately, the flexibility among protein-protein interactions has been studied by analyzing homologous sequence families of interacting proteins with the help of information theory based measures like mutual information and Bhattacharyya co-efficient. Since interacting proteins may co-evolve, co-variation may allow the preservation of a functional interaction between co-evolving proteins and interdependent residue pair alterations may occur as a result of evolutionary pressure. Analysis of molecular co-evolution in inter-cellular protein interaction complexes determined that co-evolutionary pairings may be present among interface and noninterface residue pairs and such positions are likely to be crucial for a functional interaction between these sets of proteins. Therefore, utilising information contained in biological sequences, co-evolutionary pairings involving structurally or functionally crucial residue positions in disease associated inter-cellular protein-protein interaction complexes were predicted. Thus, different computational approaches have been utilised to study a particular hypothesis in a disease scenario in order to delineate certain themes prevalent in intra-cellular or inter-cellular interactions among bio-molecular entities while predicting disease associated entities or studying interaction patterns among them

    Decoding function through comparative genomics: from animal evolution to human disease

    Full text link
    Deciphering the functionality encoded in the genome constitutes an essential first step to understanding the context through which mutations can cause human disease. In this dissertation, I present multiple studies based on the use or development of comparative genomics techniques to elucidate function (or lack of function) from the genomes of humans and other animal species. Collectively, these studies focus on two biological entities encoded in the human genome: genes related to human disease susceptibility and those that encode microRNAs - small RNAs that have important gene-regulatory roles in normal biological function and in human disease. Extending this work, I investigated the evolution of these biological entities within animals to shed light on how their underlying functions arose and how they can be modeled in non-human species. Additionally, I present a new tool that uses large-scale clinical genomic data to identify human mutations that may affect microRNA regulatory functions, thereby providing a method by which state-of-the-art genomic technologies can be fully utilized in the search for new disease mechanisms and potential drug targets. The scientific contributions made in this dissertation utilize current data sets generated using high-throughput sequencing technologies. For example, recent whole-genome sequencing studies of the most distant animal lineages have effectively restructured the animal tree of life as we understand it. The first two chapters utilize data from this new high-confidence animal phylogeny - in addition to data generated in the course of my work - to demonstrate that (1) certain classes of human disease have uncommonly large proportions of genes that evolved with the earliest animals and/or vertebrates, and (2) that canonical microRNA functionality - absent in at least two of the early branching animal lineages - likely evolved after the first animals. In the third chapter, I expand upon recent research in predicting microRNA target sites, describing a novel tool for predicting clinically significant microRNA target site variants and demonstrating its applicability to the analysis of clinical genomic data. Thus, the studies detailed in this dissertation represent significant advances in our understanding of the functions of disease genes and microRNAs from both an evolutionary and a clinical perspective

    The evolutionary dynamics of microRNAs in domestic mammals

    Get PDF
    MiRNAs are crucial regulators of gene expression found across both the plant and animal kingdoms. While the number of annotated miRNAs deposited in miRBase has greatly increased in recent years, few studies provided comparative analyses across sets of related species, or investigated the role of miRNAs in the evolution of gene regulation. We generated small RNA libraries across 5 mammalian species (cow, dog, horse, pig and rabbit) from 4 different tissues (brain, heart, kidney and testis). We identified 1676 miRBase and 413 novel miRNAs by manually curating the set of computational predictions obtained from miRCat and miRDeep2. Our dataset spanning five species has enabled us to investigate the molecular mechanisms and selective pressures driving the evolution of miRNAs in mammals. We highlight the important contributions of intronic sequences (366 orthogroups), duplication events (135 orthogroups) and repetitive elements (37 orthogroups) in the emergence of new miRNA loci. We use this framework to estimate the patterns of gains and losses across the phylogeny, and observe high levels of miRNA turnover. Additionally, the identification of lineage-specific losses enables the characterisation of the selective constraints acting on the associated target sites. Compared to the miRBase subset, novel miRNAs tend to be more tissue specific. 20 percent of novel orthogroups are restricted to the brain, and their target repertoires appear to be enriched for neuron activity and differentiation processes. These findings may reflect an important role for young miRNAs in the evolution of brain expression plasticity. Many seed sequences appear to be specific to either the cow or the dog. Analyses on the associated targets highlight the presence of several genes under artificial positive selection, suggesting an involvement of these miRNAs in the domestication process. Altogether, we provide an overview on the evolutionary mechanisms responsible for miRNA turnover in 5 domestic species, and their possible contribution to the evolution of gene regulation

    Modeling cancer metabolism on a genome scale

    Get PDF
    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field

    MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains

    Get PDF
    Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%–4% of mRNA and 4%–6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA–driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions

    Evolutionary Approaches to the Study of Small Noncoding Regulatory RNA Pathways: A Dissertation

    Get PDF
    Short noncoding RNAs play roles in regulating nearly every biological process, in nearly every organism, yet the exact function and importance of these molecules remains a subject of some debate. In order to gain a better understanding of the contexts in which these regulators have evolved, I have undertaken a variety of approaches to study the evolutionary history of the components that make up these pathways, in the form of two main research efforts. In the first chapter, I have used a combination of population genetics and molecular evolution techniques to show that proteins involved in the piRNA pathway are rapidly evolving, and that different components of the pathway seem to be evolving rapidly on different timescales. These rapidly evolving piRNA pathway proteins can be loosely separated into two groups. The first group appears to evolve quickly at the species level, perhaps in response to transposons that invade across species lines, while the second group appears to evolve quickly at the level of individual populations, perhaps in response to transposons that are paternally present yet novel to the maternal genome. In the second chapter of my research, I have used molecular evolution techniques and carefully devised controls to show that the binding sites of well-conserved miRNAs are among the most slowly changing short motifs in the genome, consistent with a conserved function for these short RNAs in regulatory pathways that are ancient and extremely slow to change. I have additionally discovered a major flaw in an existing approach to motif turnover calculations, which may lead to systematic biases in the published literature toward the false inference of increased regulatory complexity over time. I have implemented a revised approach to motif turnover that addresses this flaw
    corecore