5 research outputs found

    Modeling Human Visual Search Performance on Realistic Webpages Using Analytical and Deep Learning Methods

    Full text link
    Modeling visual search not only offers an opportunity to predict the usability of an interface before actually testing it on real users, but also advances scientific understanding about human behavior. In this work, we first conduct a set of analyses on a large-scale dataset of visual search tasks on realistic webpages. We then present a deep neural network that learns to predict the scannability of webpage content, i.e., how easy it is for a user to find a specific target. Our model leverages both heuristic-based features such as target size and unstructured features such as raw image pixels. This approach allows us to model complex interactions that might be involved in a realistic visual search task, which can not be easily achieved by traditional analytical models. We analyze the model behavior to offer our insights into how the salience map learned by the model aligns with human intuition and how the learned semantic representation of each target type relates to its visual search performance.Comment: the 2020 CHI Conference on Human Factors in Computing System

    Intelligent Exploration for User Interface Modules of Mobile App with Collective Learning

    Full text link
    A mobile app interface usually consists of a set of user interface modules. How to properly design these user interface modules is vital to achieving user satisfaction for a mobile app. However, there are few methods to determine design variables for user interface modules except for relying on the judgment of designers. Usually, a laborious post-processing step is necessary to verify the key change of each design variable. Therefore, there is a only very limited amount of design solutions that can be tested. It is timeconsuming and almost impossible to figure out the best design solutions as there are many modules. To this end, we introduce FEELER, a framework to fast and intelligently explore design solutions of user interface modules with a collective machine learning approach. FEELER can help designers quantitatively measure the preference score of different design solutions, aiming to facilitate the designers to conveniently and quickly adjust user interface module. We conducted extensive experimental evaluations on two real-life datasets to demonstrate its applicability in real-life cases of user interface module design in the Baidu App, which is one of the most popular mobile apps in China.Comment: 10 pages, accepted as a full paper in KDD 202

    Reflow: Automatically Improving Touch Interactions in Mobile Applications through Pixel-based Refinements

    Full text link
    Touch is the primary way that users interact with smartphones. However, building mobile user interfaces where touch interactions work well for all users is a difficult problem, because users have different abilities and preferences. We propose a system, Reflow, which automatically applies small, personalized UI adaptations, called refinements -- to mobile app screens to improve touch efficiency. Reflow uses a pixel-based strategy to work with existing applications, and improves touch efficiency while minimally disrupting the design intent of the original application. Our system optimizes a UI by (i) extracting its layout from its screenshot, (ii) refining its layout, and (iii) re-rendering the UI to reflect these modifications. We conducted a user study with 10 participants and a heuristic evaluation with 6 experts and found that applications optimized by Reflow led to, on average, 9% faster selection time with minimal layout disruption. The results demonstrate that Reflow's refinements useful UI adaptations to improve touch interactions

    Predicting Human Performance in Vertical Menu Selection Using Deep Learning

    No full text
    International audiencePredicting human performance in interaction tasks allows designers or developers to understand the expected performance of a target interface without actually testing it with real users. In this work, we present a deep neural net to model and predict human performance in performing a sequence of UI tasks. In particular, we focus on a dominant class of tasks, i.e., target selection from a vertical list or menu. We experimented with our deep neural net using a public dataset collected from a desktop laboratory environment and a dataset collected from hundreds of touchscreen smartphone users via crowdsourcing. Our model significantly outperformed previous methods on these datasets. Importantly, our method, as a deep model, can easily incorporate additional UI attributes such as visual appearance and content semantics without changing model architectures. By understanding about how a deep learning model learns from human behaviors, our approach can be seen as a vehicle to discover new patterns about human behaviors to advance analytical modeling
    corecore