3,979 research outputs found

    Tree Contractions and Evolutionary Trees

    Full text link
    An evolutionary tree is a rooted tree where each internal vertex has at least two children and where the leaves are labeled with distinct symbols representing species. Evolutionary trees are useful for modeling the evolutionary history of species. An agreement subtree of two evolutionary trees is an evolutionary tree which is also a topological subtree of the two given trees. We give an algorithm to determine the largest possible number of leaves in any agreement subtree of two trees T_1 and T_2 with n leaves each. If the maximum degree d of these trees is bounded by a constant, the time complexity is O(n log^2(n)) and is within a log(n) factor of optimal. For general d, this algorithm runs in O(n d^2 log(d) log^2(n)) time or alternatively in O(n d sqrt(d) log^3(n)) time

    Dynamic Integer Sets with Optimal Rank, Select, and Predecessor Search

    Full text link
    We present a data structure representing a dynamic set S of w-bit integers on a w-bit word RAM. With |S|=n and w > log n and space O(n), we support the following standard operations in O(log n / log w) time: - insert(x) sets S = S + {x}. - delete(x) sets S = S - {x}. - predecessor(x) returns max{y in S | y= x}. - rank(x) returns #{y in S | y< x}. - select(i) returns y in S with rank(y)=i, if any. Our O(log n/log w) bound is optimal for dynamic rank and select, matching a lower bound of Fredman and Saks [STOC'89]. When the word length is large, our time bound is also optimal for dynamic predecessor, matching a static lower bound of Beame and Fich [STOC'99] whenever log n/log w=O(log w/loglog w). Technically, the most interesting aspect of our data structure is that it supports all the above operations in constant time for sets of size n=w^{O(1)}. This resolves a main open problem of Ajtai, Komlos, and Fredman [FOCS'83]. Ajtai et al. presented such a data structure in Yao's abstract cell-probe model with w-bit cells/words, but pointed out that the functions used could not be implemented. As a partial solution to the problem, Fredman and Willard [STOC'90] introduced a fusion node that could handle queries in constant time, but used polynomial time on the updates. We call our small set data structure a dynamic fusion node as it does both queries and updates in constant time.Comment: Presented with different formatting in Proceedings of the 55nd IEEE Symposium on Foundations of Computer Science (FOCS), 2014, pp. 166--175. The new version fixes a bug in one of the bounds stated for predecessor search, pointed out to me by Djamal Belazzougu

    Dynamic Range Majority Data Structures

    Full text link
    Given a set PP of coloured points on the real line, we study the problem of answering range α\alpha-majority (or "heavy hitter") queries on PP. More specifically, for a query range QQ, we want to return each colour that is assigned to more than an α\alpha-fraction of the points contained in QQ. We present a new data structure for answering range α\alpha-majority queries on a dynamic set of points, where α(0,1)\alpha \in (0,1). Our data structure uses O(n) space, supports queries in O((lgn)/α)O((\lg n) / \alpha) time, and updates in O((lgn)/α)O((\lg n) / \alpha) amortized time. If the coordinates of the points are integers, then the query time can be improved to O(lgn/(αlglgn)+(lg(1/α))/α))O(\lg n / (\alpha \lg \lg n) + (\lg(1/\alpha))/\alpha)). For constant values of α\alpha, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for d2d \ge 2, as well as dynamic arrays, in which each entry is a colour.Comment: 16 pages, Preliminary version appeared in ISAAC 201

    Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

    Get PDF
    Given a static reference string RR and a source string SS, a relative compression of SS with respect to RR is an encoding of SS as a sequence of references to substrings of RR. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string SS is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem

    c-trie++: A Dynamic Trie Tailored for Fast Prefix Searches

    Full text link
    Given a dynamic set KK of kk strings of total length nn whose characters are drawn from an alphabet of size σ\sigma, a keyword dictionary is a data structure built on KK that provides locate, prefix search, and update operations on KK. Under the assumption that α=w/lgσ\alpha = w / \lg \sigma characters fit into a single machine word ww, we propose a keyword dictionary that represents KK in nlgσ+Θ(klgn)n \lg \sigma + \Theta(k \lg n) bits of space, supporting all operations in O(m/α+lgα)O(m / \alpha + \lg \alpha) expected time on an input string of length mm in the word RAM model. This data structure is underlined with an exhaustive practical evaluation, highlighting the practical usefulness of the proposed data structure, especially for prefix searches - one of the most elementary keyword dictionary operations

    I/O-Efficient Planar Range Skyline and Attrition Priority Queues

    Full text link
    In the planar range skyline reporting problem, we store a set P of n 2D points in a structure such that, given a query rectangle Q = [a_1, a_2] x [b_1, b_2], the maxima (a.k.a. skyline) of P \cap Q can be reported efficiently. The query is 3-sided if an edge of Q is grounded, giving rise to two variants: top-open (b_2 = \infty) and left-open (a_1 = -\infty) queries. All our results are in external memory under the O(n/B) space budget, for both the static and dynamic settings: * For static P, we give structures that answer top-open queries in O(log_B n + k/B), O(loglog_B U + k/B), and O(1 + k/B) I/Os when the universe is R^2, a U x U grid, and a rank space grid [O(n)]^2, respectively (where k is the number of reported points). The query complexity is optimal in all cases. * We show that the left-open case is harder, such that any linear-size structure must incur \Omega((n/B)^e + k/B) I/Os for a query. We show that this case is as difficult as the general 4-sided queries, for which we give a static structure with the optimal query cost O((n/B)^e + k/B). * We give a dynamic structure that supports top-open queries in O(log_2B^e (n/B) + k/B^1-e) I/Os, and updates in O(log_2B^e (n/B)) I/Os, for any e satisfying 0 \le e \le 1. This leads to a dynamic structure for 4-sided queries with optimal query cost O((n/B)^e + k/B), and amortized update cost O(log (n/B)). As a contribution of independent interest, we propose an I/O-efficient version of the fundamental structure priority queue with attrition (PQA). Our PQA supports FindMin, DeleteMin, and InsertAndAttrite all in O(1) worst case I/Os, and O(1/B) amortized I/Os per operation. We also add the new CatenateAndAttrite operation that catenates two PQAs in O(1) worst case and O(1/B) amortized I/Os. This operation is a non-trivial extension to the classic PQA of Sundar, even in internal memory.Comment: Appeared at PODS 2013, New York, 19 pages, 10 figures. arXiv admin note: text overlap with arXiv:1208.4511, arXiv:1207.234
    corecore