117,699 research outputs found
Phenotypically Plastic Responses to Predation Risk Are Temperature Dependent
Predicting how organisms respond to climate change requires that we understand the temperature dependence of fitness in relevant ecological contexts (e.g., with or without predation risk). Predation risk often induces changes to life history traits that are themselves temperature dependent. We explore how perceived predation risk and temperature interact to determine fitness (indicated by the intrinsic rate of increase, r) through changes to its underlying components (net reproductive rate, generation time, and survival) in Daphnia magna. We exposed Daphnia to predation cues from dragonfly naiads early, late, or throughout their ontogeny. Predation risk increased r differentially across temperatures and depending on the timing of exposure to predation cues. The timing of predation risk likewise altered the temperature-dependent response of T and R0. Daphnia at hotter temperatures responded to predation risk by increasing r through a combination of increased R0 and decreased T that together countered an increase in mortality rate. However, only D. magna that experienced predation cues early in ontogeny showed elevated r at colder temperatures. These results highlight the fact that phenotypically plastic responses of life history traits to predation risk can be strongly temperature dependent
Habitat Selection and Risk of Predation: Re-colonization by Lynx had Limited Impact on Habitat Selection by Roe Deer
Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations
Prey body size mediates the predation risk associated with being "odd"
Despite selection pressures on prey animals to maintain phenotypically homogeneous groups, variation in phenotype within animal groups is commonly observed. Although many prey animals preferentially associate with size-matched individuals, a lack of preference or a preference for nonmatching group mates is also commonly observed. We suggest that the assortative response to predation risk may be mediated by body size because larger bodied prey may be at greater risk of predation than smaller bodied prey when in a mixed group due to their greater potential profitability. We test this idea by observing attacks by three-spine sticklebacks Gasterosteus aculeatus on mixed groups of large and small Daphnia magna prey. We find that smaller Daphnia are at greatest risk when they form the majority of the group, whereas larger Daphnia are at the greatest predation risk when they form the minority. Thus, we predict that both large and small prey should benefit by association with large prey, generating a potential conflict over group membership that may lead to the mixed phenotype groups we observe in nature
Predation risk reduces a female preference for heterospecific males in the green swordtail
The presence of a predator can result in the alteration, loss or reversal of a mating preference. Under predation risk, females often change their initial preference for conspicuous males, favouring less flashy males to reduce the risk of being detected by predators. Previous studies on predator-induced plasticity in mate preferences have given females a choice between more and less conspicuous conspecific males. However, in species that naturally hybridize, it is also possible that females might choose an inconspicuous heterospecific male over a conspicuous conspecific male under predation risk. Our study addresses this question using the green swordtail (Xiphophorus helleri) and the southern platyfish (Xiphophorus maculatus), which are sympatric in the wild. We hypothesized that X. helleri females would prefer the sworded conspecific males in the absence of a predator but favour the less conspicuous, swordless, heterospecific males in the presence of a predator. Contrary to our expectation, females associated more with the heterospecific male than the conspecific male in the control (no predator) treatment, and they were non-choosy in the predator treatment. This might reflect that females were attracted to the novel male phenotype when there was no risk of predation but became more neophobic after predator exposure. Regardless of the underlying mechanism, our results suggest that predation pressure may affect female preferences for conspecific versus heterospecific males. We also found striking within-population, between-individual variation in behavioural plasticity: females differed in the strength and direction of their preferences, as well as in the extent to which they altered their preferences in response to changes in perceived predation risk. Such variation in female preferences for heterospecific males could potentially lead to temporal and spatial variation in hybridization rates in the wild
Phenotypic and social effects on behavioural trade-offs in Eurasian perch
Trading between conflicting demands is a fundamental part in how animals interact with its environment and social surrounding. Knowledge of what factors that are affecting behavioural decisions is central in our understanding of animal adaptation and ecology. This thesis summarizes a series of behavioural experiments investigating how animals compromise behaviours depending on environmental background and context. The focus is on within- and between-population variation in risk-taking and social trade-offs in young of the year and one year old Eurasian perch. Perch behaviour was quantified by observational studies in aquaria, using standardized assays that captured perch boldness and sociability. Perch from different predation backgrounds were compared in common garden experiments, as well as in multi-year inter-population comparisons, to study influence of predation experience on risk-taking phenotype. Results demonstrate predation as an important factor underlying how perch balance risk. Variation in risk-taking phenotype could to a large extent be explained by individual differences in experience of predation, rather than by fixed inherited responses caused by divergent selection. Experience of predation had long lasting effects on perch boldness, but perch were also able to quickly adjust phenotype in response to current conditions, indicating temporal flexibility in how experience shape behaviour. Social context influenced behaviour, with fish being bolder in larger group, and showing higher behavioural conformity. Occurrence of consistent individual variation in risk-taking and social behaviour could be established, confirming the existence of a personality dimension in perch behaviour. The thesis concludes that variation in how perch trade-off conflicting behaviours exists at multiple levels, from population to individual. Behavioural plasticity, even in strongly fitness related traits, is evident, although potential behavioural constraints in the form of consistent individuality is also present
Balancing the dilution and oddity effects: Decisions depend on body size
Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions
Environmental conditions during early life accelerate the rate of senescence in a short-lived passerine bird
Environmental conditions experienced in early life may shape subsequent phenotypic traits including life history. We investigated how predation risk caused by domestic cats (Felis silvestris catus) and local breeding density affected patterns of reproductive and survival senescence in Barn Swallows (Hirundo rustica) breeding semicolonially in Denmark. We recorded the abundance of cats and the number of breeding pairs at 39 breeding sites during 24 years and related these to age-specific survival rate and reproductive senescence to test predictions of the life history theory of senescence. We found evidence for actuarial senescence for the first time in this species. Survival rate increased until reaching a plateau in midlife and then decreased later. We also found that survival rate was higher for males than females. Local breeding density or predation risk did not affect survival as predicted by theory. Barn Swallows with short lives did not invest more in reproduction in early life, inconsistent with expectations for trade-offs between reproduction and survival as theory suggests. However, we found that the rate of reproductive decline during senescence was steeper for individuals exposed to intense competition, and predation pressure accelerated the rate of reproductive senescence, but only in sites with many breeding pairs. These latter results are in accordance with one of the predictions suggested by the life history theory of aging. These results emphasize the importance of considering intraspecific competition and interspecific interactions such as predation when analyzing reproductive and actuarial senescence
The effect of temporally variable environmental stimuli and group size on emergence behavior
How animals trade-off food availability and predation threats is a strong determinant of animal activity and behavior; however, the majority of work on this topic has been on individual animals, despite the modulating effect the presence of conspecifics can have on both foraging and predation risk. Although these environmental factors (food and predation threat) vary spatially within habitats, they also vary temporally, and in marine habitats, this can be determined by not only the diel cycle but also the tidal cycle. Humbug damselfish, Dascyllus aruanus, live in small groups of unrelated individuals within and around branching coral heads, which they collectively withdraw into to escape a predation threat. In this study, we measured the proportion of individuals in the colony that were outside the coral head before and after they were scared by a fright stimulus and compared the responses at high tide (HT) and low tide (LT). We found that a greater proportion of the shoal emerged after the fright stimulus at HT and in larger groups than at LT or in smaller groups. We also quantified the pattern of emergence over time and discovered the rate of emergence was faster in larger shoals as time progressed. We show that shoals of fish change their behavioral response to a predation threat in accordance with the tide, exemplifying how temporally variable environmental factors can shape group movement decisions
Foraging under Predation Risk: A test of giving-up densities with samango monkeys in South Africa
Animals frequently make a trade-off between food and safety and will sacrifice feeding effort if it means safety from predators. A forager can also vary its vigilance levels to manage predation risk. Giving-up densities (GUDs), the amount of food items left once a forager has quit an experimental food patch, have been used extensively as measures of foraging behaviour under risk of predation in a wide range of species. Vigilance also serves as an anti-predatory response to predation risk and has been the focus of a range of behavioural studies. However, very few studies have looked at these two measures together.
The principal aim of this study was to determine the effect of habitat factors on the foraging behaviour of samango monkeys (Cercopithcus mitis erythrarchus) by measuring GUDs in artificial food patches and foraging behaviour, and relating this to height from the ground, canopy cover, habitat visibility and observed behaviour. The second objective was then to determine the extent to which the experimental approach matched observed behaviour in measuring primate responses to predation risk.
The monkeys revealed lower GUDs with increasing height and with decreasing canopy cover and but were not affected by habitat visibility. Vigilance varied considerably with only conspecific and observer vigilance showing significant effects. Conspecific vigilance increased with height and decreasing canopy cover. Vigilance directed at observers increased with decreasing canopy cover. There was no effect of habitat visibility on any of the component behaviours of vigilance.
The vigilance behaviour of the monkeys did not completely compliment the GUD results. The findings of this study confirm the prediction that habitat plays a key role in the foraging behaviour of samango monkeys but that vigilance is more sensitive to other factors such as sociality. Further work is required to determine the extent to which experimental approaches based on giving up densities match patterns of antipredatory behaviour recorded by observational methods
Linking Snake Behavior to Nest Predation in a Midwestern Bird Community
Nest predators can adversely affect the viability of songbird populations, and their impact is exacerbated in fragmented habitats. Despite substantial research on this predator-prey interaction, however, almost all of the focus has been on the birds rather than their nest predators, thereby limiting our understanding of the factors that bring predators and nests into contact. We used radiotelemetry to document the activity of two snake species (rat snakes, Elaphe obsoleta; racers, Coluber constrictor) known to prey on nests in Midwestern bird communities and simultaneously monitored 300 songbird nests and tested the hypothesis that predation risk should increase for nests when snakes were more active and in edge habitat preferred by both snake species. Predation risk increased when rat snakes were more active, for all nests combined and for two of the six bird species for which we had sufficient nests to allow separate analyses. This result is consistent with rat snakes being more important nest predators than racers. We found no evidence, however, that nests closer to forest edges were at greater risk. These results are generally consistent with the one previous study that investigated rat snakes and nest predation simultaneously. The seemingly paradoxical failure to find higher predation risk in the snakes\u27 preferred habitat (i.e., edge) might be explained by the snakes using edges at least in part for non-foraging activities. We propose that higher nest predation in fragmented habitats (at least that attributable to snakes) results indirectly from edges promoting larger snake populations, rather than from edges directly increasing the risk of nest predation by snakes. If so, the notion of edges per se functioning as ecological traps merits further study
- …
